| #ifdef _Py_JIT |
| |
| #include "Python.h" |
| |
| #include "pycore_abstract.h" |
| #include "pycore_bitutils.h" |
| #include "pycore_call.h" |
| #include "pycore_ceval.h" |
| #include "pycore_critical_section.h" |
| #include "pycore_dict.h" |
| #include "pycore_floatobject.h" |
| #include "pycore_frame.h" |
| #include "pycore_function.h" |
| #include "pycore_interpframe.h" |
| #include "pycore_interpolation.h" |
| #include "pycore_intrinsics.h" |
| #include "pycore_list.h" |
| #include "pycore_long.h" |
| #include "pycore_mmap.h" |
| #include "pycore_opcode_metadata.h" |
| #include "pycore_opcode_utils.h" |
| #include "pycore_optimizer.h" |
| #include "pycore_pyerrors.h" |
| #include "pycore_setobject.h" |
| #include "pycore_sliceobject.h" |
| #include "pycore_template.h" |
| #include "pycore_tuple.h" |
| #include "pycore_unicodeobject.h" |
| |
| #include "pycore_jit.h" |
| |
| // Memory management stuff: //////////////////////////////////////////////////// |
| |
| #ifndef MS_WINDOWS |
| #include <sys/mman.h> |
| #endif |
| |
| static size_t |
| get_page_size(void) |
| { |
| #ifdef MS_WINDOWS |
| SYSTEM_INFO si; |
| GetSystemInfo(&si); |
| return si.dwPageSize; |
| #else |
| return sysconf(_SC_PAGESIZE); |
| #endif |
| } |
| |
| static void |
| jit_error(const char *message) |
| { |
| #ifdef MS_WINDOWS |
| int hint = GetLastError(); |
| #else |
| int hint = errno; |
| #endif |
| PyErr_Format(PyExc_RuntimeWarning, "JIT %s (%d)", message, hint); |
| } |
| |
| static unsigned char * |
| jit_alloc(size_t size) |
| { |
| if (size > PY_MAX_JIT_CODE_SIZE) { |
| jit_error("code too big; refactor bytecodes.c to keep uop size down, or reduce maximum trace length."); |
| return NULL; |
| } |
| assert(size); |
| assert(size % get_page_size() == 0); |
| #ifdef MS_WINDOWS |
| int flags = MEM_COMMIT | MEM_RESERVE; |
| unsigned char *memory = VirtualAlloc(NULL, size, flags, PAGE_READWRITE); |
| int failed = memory == NULL; |
| #else |
| int flags = MAP_ANONYMOUS | MAP_PRIVATE; |
| int prot = PROT_READ | PROT_WRITE; |
| unsigned char *memory = mmap(NULL, size, prot, flags, -1, 0); |
| int failed = memory == MAP_FAILED; |
| if (!failed) { |
| _PyAnnotateMemoryMap(memory, size, "cpython:jit"); |
| } |
| #endif |
| if (failed) { |
| jit_error("unable to allocate memory"); |
| return NULL; |
| } |
| return memory; |
| } |
| |
| static int |
| jit_free(unsigned char *memory, size_t size) |
| { |
| assert(size); |
| assert(size % get_page_size() == 0); |
| #ifdef MS_WINDOWS |
| int failed = !VirtualFree(memory, 0, MEM_RELEASE); |
| #else |
| int failed = munmap(memory, size); |
| #endif |
| if (failed) { |
| jit_error("unable to free memory"); |
| return -1; |
| } |
| OPT_STAT_ADD(jit_freed_memory_size, size); |
| return 0; |
| } |
| |
| static int |
| mark_executable(unsigned char *memory, size_t size) |
| { |
| if (size == 0) { |
| return 0; |
| } |
| assert(size % get_page_size() == 0); |
| // Do NOT ever leave the memory writable! Also, don't forget to flush the |
| // i-cache (I cannot begin to tell you how horrible that is to debug): |
| #ifdef MS_WINDOWS |
| if (!FlushInstructionCache(GetCurrentProcess(), memory, size)) { |
| jit_error("unable to flush instruction cache"); |
| return -1; |
| } |
| int old; |
| int failed = !VirtualProtect(memory, size, PAGE_EXECUTE_READ, &old); |
| #else |
| __builtin___clear_cache((char *)memory, (char *)memory + size); |
| int failed = mprotect(memory, size, PROT_EXEC | PROT_READ); |
| #endif |
| if (failed) { |
| jit_error("unable to protect executable memory"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| // JIT compiler stuff: ///////////////////////////////////////////////////////// |
| |
| #define GOT_SLOT_SIZE sizeof(uintptr_t) |
| #define SYMBOL_MASK_WORDS 8 |
| |
| typedef uint32_t symbol_mask[SYMBOL_MASK_WORDS]; |
| |
| typedef struct { |
| unsigned char *mem; |
| symbol_mask mask; |
| size_t size; |
| } symbol_state; |
| |
| typedef struct { |
| symbol_state trampolines; |
| symbol_state got_symbols; |
| uintptr_t instruction_starts[UOP_MAX_TRACE_LENGTH]; |
| } jit_state; |
| |
| // Warning! AArch64 requires you to get your hands dirty. These are your gloves: |
| |
| // value[value_start : value_start + len] |
| static uint32_t |
| get_bits(uint64_t value, uint8_t value_start, uint8_t width) |
| { |
| assert(width <= 32); |
| return (value >> value_start) & ((1ULL << width) - 1); |
| } |
| |
| // *loc[loc_start : loc_start + width] = value[value_start : value_start + width] |
| static void |
| set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start, |
| uint8_t width) |
| { |
| assert(loc_start + width <= 32); |
| uint32_t temp_val; |
| // Use memcpy to safely read the value, avoiding potential alignment |
| // issues and strict aliasing violations. |
| memcpy(&temp_val, loc, sizeof(temp_val)); |
| // Clear the bits we're about to patch: |
| temp_val &= ~(((1ULL << width) - 1) << loc_start); |
| assert(get_bits(temp_val, loc_start, width) == 0); |
| // Patch the bits: |
| temp_val |= get_bits(value, value_start, width) << loc_start; |
| assert(get_bits(temp_val, loc_start, width) == get_bits(value, value_start, width)); |
| // Safely write the modified value back to memory. |
| memcpy(loc, &temp_val, sizeof(temp_val)); |
| } |
| |
| // See https://developer.arm.com/documentation/ddi0602/2023-09/Base-Instructions |
| // for instruction encodings: |
| #define IS_AARCH64_ADD_OR_SUB(I) (((I) & 0x11C00000) == 0x11000000) |
| #define IS_AARCH64_ADRP(I) (((I) & 0x9F000000) == 0x90000000) |
| #define IS_AARCH64_BRANCH(I) (((I) & 0x7C000000) == 0x14000000) |
| #define IS_AARCH64_BRANCH_COND(I) (((I) & 0x7C000000) == 0x54000000) |
| #define IS_AARCH64_BRANCH_ZERO(I) (((I) & 0x7E000000) == 0x34000000) |
| #define IS_AARCH64_TEST_AND_BRANCH(I) (((I) & 0x7E000000) == 0x36000000) |
| #define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000) |
| #define IS_AARCH64_MOV(I) (((I) & 0x9F800000) == 0x92800000) |
| |
| // LLD is a great reference for performing relocations... just keep in |
| // mind that Tools/jit/build.py does filtering and preprocessing for us! |
| // Here's a good place to start for each platform: |
| // - aarch64-apple-darwin: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp |
| // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp |
| // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h |
| // - aarch64-pc-windows-msvc: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp |
| // - aarch64-unknown-linux-gnu: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp |
| // - i686-pc-windows-msvc: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp |
| // - x86_64-apple-darwin: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp |
| // - x86_64-pc-windows-msvc: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp |
| // - x86_64-unknown-linux-gnu: |
| // - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp |
| |
| |
| // Get the symbol slot memory location for a given symbol ordinal. |
| static unsigned char * |
| get_symbol_slot(int ordinal, symbol_state *state, int size) |
| { |
| const uint32_t symbol_mask = 1U << (ordinal % 32); |
| const uint32_t state_mask = state->mask[ordinal / 32]; |
| assert(symbol_mask & state_mask); |
| |
| // Count the number of set bits in the symbol mask lower than ordinal |
| size_t index = _Py_popcount32(state_mask & (symbol_mask - 1)); |
| for (int i = 0; i < ordinal / 32; i++) { |
| index += _Py_popcount32(state->mask[i]); |
| } |
| |
| unsigned char *slot = state->mem + index * size; |
| assert((size_t)(index + 1) * size <= state->size); |
| return slot; |
| } |
| |
| // Return the address of the GOT slot for the requested symbol ordinal. |
| static uintptr_t |
| got_symbol_address(int ordinal, jit_state *state) |
| { |
| return (uintptr_t)get_symbol_slot(ordinal, &state->got_symbols, GOT_SLOT_SIZE); |
| } |
| |
| // Many of these patches are "relaxing", meaning that they can rewrite the |
| // code they're patching to be more efficient (like turning a 64-bit memory |
| // load into a 32-bit immediate load). These patches have an "x" in their name. |
| // Relative patches have an "r" in their name. |
| |
| // 32-bit absolute address. |
| void |
| patch_32(unsigned char *location, uint64_t value) |
| { |
| // Check that we're not out of range of 32 unsigned bits: |
| assert(value < (1ULL << 32)); |
| uint32_t final_value = (uint32_t)value; |
| memcpy(location, &final_value, sizeof(final_value)); |
| } |
| |
| // 32-bit relative address. |
| void |
| patch_32r(unsigned char *location, uint64_t value) |
| { |
| value -= (uintptr_t)location; |
| // Check that we're not out of range of 32 signed bits: |
| assert((int64_t)value >= -(1LL << 31)); |
| assert((int64_t)value < (1LL << 31)); |
| uint32_t final_value = (uint32_t)value; |
| memcpy(location, &final_value, sizeof(final_value)); |
| } |
| |
| // 64-bit absolute address. |
| void |
| patch_64(unsigned char *location, uint64_t value) |
| { |
| memcpy(location, &value, sizeof(value)); |
| } |
| |
| // 12-bit low part of an absolute address. Pairs nicely with patch_aarch64_21r |
| // (below). |
| void |
| patch_aarch64_12(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32)); |
| // There might be an implicit shift encoded in the instruction: |
| uint8_t shift = 0; |
| if (IS_AARCH64_LDR_OR_STR(*loc32)) { |
| shift = (uint8_t)get_bits(*loc32, 30, 2); |
| // If both of these are set, the shift is supposed to be 4. |
| // That's pretty weird, and it's never actually been observed... |
| assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0); |
| } |
| value = get_bits(value, 0, 12); |
| assert(get_bits(value, 0, shift) == 0); |
| set_bits(loc32, 10, value, shift, 12); |
| } |
| |
| // Relaxable 12-bit low part of an absolute address. Pairs nicely with |
| // patch_aarch64_21rx (below). |
| void |
| patch_aarch64_12x(unsigned char *location, uint64_t value) |
| { |
| // This can *only* be relaxed if it occurs immediately before a matching |
| // patch_aarch64_21rx. If that happens, the JIT build step will replace both |
| // calls with a single call to patch_aarch64_33rx. Otherwise, we end up |
| // here, and the instruction is patched normally: |
| patch_aarch64_12(location, value); |
| } |
| |
| // 16-bit low part of an absolute address. |
| void |
| patch_aarch64_16a(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_MOV(*loc32)); |
| // Check the implicit shift (this is "part 0 of 3"): |
| assert(get_bits(*loc32, 21, 2) == 0); |
| set_bits(loc32, 5, value, 0, 16); |
| } |
| |
| // 16-bit middle-low part of an absolute address. |
| void |
| patch_aarch64_16b(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_MOV(*loc32)); |
| // Check the implicit shift (this is "part 1 of 3"): |
| assert(get_bits(*loc32, 21, 2) == 1); |
| set_bits(loc32, 5, value, 16, 16); |
| } |
| |
| // 16-bit middle-high part of an absolute address. |
| void |
| patch_aarch64_16c(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_MOV(*loc32)); |
| // Check the implicit shift (this is "part 2 of 3"): |
| assert(get_bits(*loc32, 21, 2) == 2); |
| set_bits(loc32, 5, value, 32, 16); |
| } |
| |
| // 16-bit high part of an absolute address. |
| void |
| patch_aarch64_16d(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_MOV(*loc32)); |
| // Check the implicit shift (this is "part 3 of 3"): |
| assert(get_bits(*loc32, 21, 2) == 3); |
| set_bits(loc32, 5, value, 48, 16); |
| } |
| |
| // 21-bit count of pages between this page and an absolute address's page... I |
| // know, I know, it's weird. Pairs nicely with patch_aarch64_12 (above). |
| void |
| patch_aarch64_21r(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| value = (value >> 12) - ((uintptr_t)location >> 12); |
| // Check that we're not out of range of 21 signed bits: |
| assert((int64_t)value >= -(1 << 20)); |
| assert((int64_t)value < (1 << 20)); |
| // value[0:2] goes in loc[29:31]: |
| set_bits(loc32, 29, value, 0, 2); |
| // value[2:21] goes in loc[5:26]: |
| set_bits(loc32, 5, value, 2, 19); |
| } |
| |
| // Relaxable 21-bit count of pages between this page and an absolute address's |
| // page. Pairs nicely with patch_aarch64_12x (above). |
| void |
| patch_aarch64_21rx(unsigned char *location, uint64_t value) |
| { |
| // This can *only* be relaxed if it occurs immediately before a matching |
| // patch_aarch64_12x. If that happens, the JIT build step will replace both |
| // calls with a single call to patch_aarch64_33rx. Otherwise, we end up |
| // here, and the instruction is patched normally: |
| patch_aarch64_21r(location, value); |
| } |
| |
| // 21-bit relative branch. |
| void |
| patch_aarch64_19r(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_BRANCH_COND(*loc32) || IS_AARCH64_BRANCH_ZERO(*loc32)); |
| value -= (uintptr_t)location; |
| // Check that we're not out of range of 21 signed bits: |
| assert((int64_t)value >= -(1 << 20)); |
| assert((int64_t)value < (1 << 20)); |
| // Since instructions are 4-byte aligned, only use 19 bits: |
| assert(get_bits(value, 0, 2) == 0); |
| set_bits(loc32, 5, value, 2, 19); |
| } |
| |
| // 28-bit relative branch. |
| void |
| patch_aarch64_26r(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| assert(IS_AARCH64_BRANCH(*loc32)); |
| value -= (uintptr_t)location; |
| // Check that we're not out of range of 28 signed bits: |
| assert((int64_t)value >= -(1 << 27)); |
| assert((int64_t)value < (1 << 27)); |
| // Since instructions are 4-byte aligned, only use 26 bits: |
| assert(get_bits(value, 0, 2) == 0); |
| set_bits(loc32, 0, value, 2, 26); |
| } |
| |
| // A pair of patch_aarch64_21rx and patch_aarch64_12x. |
| void |
| patch_aarch64_33rx(unsigned char *location, uint64_t value) |
| { |
| uint32_t *loc32 = (uint32_t *)location; |
| // Try to relax the pair of GOT loads into an immediate value: |
| assert(IS_AARCH64_ADRP(*loc32)); |
| unsigned char reg = get_bits(loc32[0], 0, 5); |
| assert(IS_AARCH64_LDR_OR_STR(loc32[1])); |
| // There should be only one register involved: |
| assert(reg == get_bits(loc32[1], 0, 5)); // ldr's output register. |
| assert(reg == get_bits(loc32[1], 5, 5)); // ldr's input register. |
| uint64_t relaxed = *(uint64_t *)value; |
| if (relaxed < (1UL << 16)) { |
| // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop |
| loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg; |
| loc32[1] = 0xD503201F; |
| return; |
| } |
| if (relaxed < (1ULL << 32)) { |
| // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY |
| loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg; |
| loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg; |
| return; |
| } |
| relaxed = value - (uintptr_t)location; |
| if ((relaxed & 0x3) == 0 && |
| (int64_t)relaxed >= -(1L << 19) && |
| (int64_t)relaxed < (1L << 19)) |
| { |
| // adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop |
| loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg; |
| loc32[1] = 0xD503201F; |
| return; |
| } |
| // Couldn't do it. Just patch the two instructions normally: |
| patch_aarch64_21rx(location, value); |
| patch_aarch64_12x(location + 4, value); |
| } |
| |
| // Relaxable 32-bit relative address. |
| void |
| patch_x86_64_32rx(unsigned char *location, uint64_t value) |
| { |
| uint8_t *loc8 = (uint8_t *)location; |
| // Try to relax the GOT load into an immediate value: |
| uint64_t relaxed; |
| memcpy(&relaxed, (void *)(value + 4), sizeof(relaxed)); |
| relaxed -= 4; |
| |
| if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) && |
| (int64_t)relaxed - (int64_t)location + 1 < (1LL << 31)) |
| { |
| if (loc8[-2] == 0x8B) { |
| // mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX] |
| loc8[-2] = 0x8D; |
| value = relaxed; |
| } |
| else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) { |
| // call qword ptr [rip + AAA] -> nop; call XXX |
| loc8[-2] = 0x90; |
| loc8[-1] = 0xE8; |
| value = relaxed; |
| } |
| else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) { |
| // jmp qword ptr [rip + AAA] -> nop; jmp XXX |
| loc8[-2] = 0x90; |
| loc8[-1] = 0xE9; |
| value = relaxed; |
| } |
| } |
| patch_32r(location, value); |
| } |
| |
| void patch_got_symbol(jit_state *state, int ordinal); |
| void patch_aarch64_trampoline(unsigned char *location, int ordinal, jit_state *state); |
| void patch_x86_64_trampoline(unsigned char *location, int ordinal, jit_state *state); |
| |
| #include "jit_stencils.h" |
| |
| #if defined(__aarch64__) || defined(_M_ARM64) |
| #define TRAMPOLINE_SIZE 16 |
| #define DATA_ALIGN 8 |
| #elif defined(__x86_64__) && defined(__APPLE__) |
| // LLVM 20 on macOS x86_64 debug builds: GOT entries may exceed ±2GB PC-relative |
| // range. |
| #define TRAMPOLINE_SIZE 16 // 14 bytes + 2 bytes padding for alignment |
| #define DATA_ALIGN 8 |
| #else |
| #define TRAMPOLINE_SIZE 0 |
| #define DATA_ALIGN 1 |
| #endif |
| |
| // Populate the GOT entry for the given symbol ordinal with its resolved address. |
| void |
| patch_got_symbol(jit_state *state, int ordinal) |
| { |
| uint64_t value = (uintptr_t)symbols_map[ordinal]; |
| unsigned char *location = (unsigned char *)get_symbol_slot(ordinal, &state->got_symbols, GOT_SLOT_SIZE); |
| patch_64(location, value); |
| } |
| |
| // Generate and patch AArch64 trampolines. The symbols to jump to are stored |
| // in the jit_stencils.h in the symbols_map. |
| void |
| patch_aarch64_trampoline(unsigned char *location, int ordinal, jit_state *state) |
| { |
| |
| uint64_t value = (uintptr_t)symbols_map[ordinal]; |
| int64_t range = value - (uintptr_t)location; |
| |
| // If we are in range of 28 signed bits, we patch the instruction with |
| // the address of the symbol. |
| if (range >= -(1 << 27) && range < (1 << 27)) { |
| patch_aarch64_26r(location, (uintptr_t)value); |
| return; |
| } |
| |
| // Out of range - need a trampoline |
| uint32_t *p = (uint32_t *)get_symbol_slot(ordinal, &state->trampolines, TRAMPOLINE_SIZE); |
| |
| /* Generate the trampoline |
| 0: 58000048 ldr x8, 8 |
| 4: d61f0100 br x8 |
| 8: 00000000 // The next two words contain the 64-bit address to jump to. |
| c: 00000000 |
| */ |
| p[0] = 0x58000048; |
| p[1] = 0xD61F0100; |
| p[2] = value & 0xffffffff; |
| p[3] = value >> 32; |
| |
| patch_aarch64_26r(location, (uintptr_t)p); |
| } |
| |
| // Generate and patch x86_64 trampolines. |
| void |
| patch_x86_64_trampoline(unsigned char *location, int ordinal, jit_state *state) |
| { |
| uint64_t value = (uintptr_t)symbols_map[ordinal]; |
| int64_t range = (int64_t)value - 4 - (int64_t)location; |
| |
| // If we are in range of 32 signed bits, we can patch directly |
| if (range >= -(1LL << 31) && range < (1LL << 31)) { |
| patch_32r(location, value - 4); |
| return; |
| } |
| |
| // Out of range - need a trampoline |
| unsigned char *trampoline = get_symbol_slot(ordinal, &state->trampolines, TRAMPOLINE_SIZE); |
| |
| /* Generate the trampoline (14 bytes, padded to 16): |
| 0: ff 25 00 00 00 00 jmp *(%rip) |
| 6: XX XX XX XX XX XX XX XX (64-bit target address) |
| |
| Reference: https://wiki.osdev.org/X86-64_Instruction_Encoding#FF (JMP r/m64) |
| */ |
| trampoline[0] = 0xFF; |
| trampoline[1] = 0x25; |
| memset(trampoline + 2, 0, 4); |
| memcpy(trampoline + 6, &value, 8); |
| |
| // Patch the call site to call the trampoline instead |
| patch_32r(location, (uintptr_t)trampoline - 4); |
| } |
| |
| static void |
| combine_symbol_mask(const symbol_mask src, symbol_mask dest) |
| { |
| // Calculate the union of the trampolines required by each StencilGroup |
| for (size_t i = 0; i < SYMBOL_MASK_WORDS; i++) { |
| dest[i] |= src[i]; |
| } |
| } |
| |
| // Compiles executor in-place. Don't forget to call _PyJIT_Free later! |
| int |
| _PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction trace[], size_t length) |
| { |
| const StencilGroup *group; |
| // Loop once to find the total compiled size: |
| size_t code_size = 0; |
| size_t data_size = 0; |
| jit_state state = {0}; |
| for (size_t i = 0; i < length; i++) { |
| const _PyUOpInstruction *instruction = &trace[i]; |
| group = &stencil_groups[instruction->opcode]; |
| state.instruction_starts[i] = code_size; |
| code_size += group->code_size; |
| data_size += group->data_size; |
| combine_symbol_mask(group->trampoline_mask, state.trampolines.mask); |
| combine_symbol_mask(group->got_mask, state.got_symbols.mask); |
| } |
| group = &stencil_groups[_FATAL_ERROR_r00]; |
| code_size += group->code_size; |
| data_size += group->data_size; |
| combine_symbol_mask(group->trampoline_mask, state.trampolines.mask); |
| combine_symbol_mask(group->got_mask, state.got_symbols.mask); |
| // Calculate the size of the trampolines required by the whole trace |
| for (size_t i = 0; i < Py_ARRAY_LENGTH(state.trampolines.mask); i++) { |
| state.trampolines.size += _Py_popcount32(state.trampolines.mask[i]) * TRAMPOLINE_SIZE; |
| } |
| for (size_t i = 0; i < Py_ARRAY_LENGTH(state.got_symbols.mask); i++) { |
| state.got_symbols.size += _Py_popcount32(state.got_symbols.mask[i]) * GOT_SLOT_SIZE; |
| } |
| // Round up to the nearest page: |
| size_t page_size = get_page_size(); |
| assert((page_size & (page_size - 1)) == 0); |
| size_t code_padding = DATA_ALIGN - ((code_size + state.trampolines.size) & (DATA_ALIGN - 1)); |
| size_t padding = page_size - ((code_size + state.trampolines.size + code_padding + data_size + state.got_symbols.size) & (page_size - 1)); |
| size_t total_size = code_size + state.trampolines.size + code_padding + data_size + state.got_symbols.size + padding; |
| unsigned char *memory = jit_alloc(total_size); |
| if (memory == NULL) { |
| return -1; |
| } |
| // Collect memory stats |
| OPT_STAT_ADD(jit_total_memory_size, total_size); |
| OPT_STAT_ADD(jit_code_size, code_size); |
| OPT_STAT_ADD(jit_trampoline_size, state.trampolines.size); |
| OPT_STAT_ADD(jit_data_size, data_size); |
| OPT_STAT_ADD(jit_got_size, state.got_symbols.size); |
| OPT_STAT_ADD(jit_padding_size, padding); |
| OPT_HIST(total_size, trace_total_memory_hist); |
| // Update the offsets of each instruction: |
| for (size_t i = 0; i < length; i++) { |
| state.instruction_starts[i] += (uintptr_t)memory; |
| } |
| // Loop again to emit the code: |
| unsigned char *code = memory; |
| state.trampolines.mem = memory + code_size; |
| unsigned char *data = memory + code_size + state.trampolines.size + code_padding; |
| assert(trace[0].opcode == _START_EXECUTOR_r00 || trace[0].opcode == _COLD_EXIT_r00 || trace[0].opcode == _COLD_DYNAMIC_EXIT_r00); |
| state.got_symbols.mem = data + data_size; |
| for (size_t i = 0; i < length; i++) { |
| const _PyUOpInstruction *instruction = &trace[i]; |
| group = &stencil_groups[instruction->opcode]; |
| group->emit(code, data, executor, instruction, &state); |
| code += group->code_size; |
| data += group->data_size; |
| } |
| // Protect against accidental buffer overrun into data: |
| group = &stencil_groups[_FATAL_ERROR_r00]; |
| group->emit(code, data, executor, NULL, &state); |
| code += group->code_size; |
| data += group->data_size; |
| assert(code == memory + code_size); |
| assert(data == memory + code_size + state.trampolines.size + code_padding + data_size); |
| if (mark_executable(memory, total_size)) { |
| jit_free(memory, total_size); |
| return -1; |
| } |
| executor->jit_code = memory; |
| executor->jit_size = total_size; |
| return 0; |
| } |
| |
| /* One-off compilation of the jit entry trampoline |
| * We compile this once only as it effectively a normal |
| * function, but we need to use the JIT because it needs |
| * to understand the jit-specific calling convention. |
| */ |
| static _PyJitEntryFuncPtr |
| compile_trampoline(void) |
| { |
| _PyExecutorObject dummy; |
| const StencilGroup *group; |
| size_t code_size = 0; |
| size_t data_size = 0; |
| jit_state state = {0}; |
| group = &trampoline; |
| code_size += group->code_size; |
| data_size += group->data_size; |
| combine_symbol_mask(group->trampoline_mask, state.trampolines.mask); |
| combine_symbol_mask(group->got_mask, state.got_symbols.mask); |
| // Round up to the nearest page: |
| size_t page_size = get_page_size(); |
| assert((page_size & (page_size - 1)) == 0); |
| size_t code_padding = DATA_ALIGN - ((code_size + state.trampolines.size) & (DATA_ALIGN - 1)); |
| size_t padding = page_size - ((code_size + state.trampolines.size + code_padding + data_size + state.got_symbols.size) & (page_size - 1)); |
| size_t total_size = code_size + state.trampolines.size + code_padding + data_size + state.got_symbols.size + padding; |
| unsigned char *memory = jit_alloc(total_size); |
| if (memory == NULL) { |
| return NULL; |
| } |
| unsigned char *code = memory; |
| state.trampolines.mem = memory + code_size; |
| unsigned char *data = memory + code_size + state.trampolines.size + code_padding; |
| state.got_symbols.mem = data + data_size; |
| // Compile the shim, which handles converting between the native |
| // calling convention and the calling convention used by jitted code |
| // (which may be different for efficiency reasons). |
| group = &trampoline; |
| group->emit(code, data, &dummy, NULL, &state); |
| code += group->code_size; |
| data += group->data_size; |
| assert(code == memory + code_size); |
| assert(data == memory + code_size + state.trampolines.size + code_padding + data_size); |
| if (mark_executable(memory, total_size)) { |
| jit_free(memory, total_size); |
| return NULL; |
| } |
| return (_PyJitEntryFuncPtr)memory; |
| } |
| |
| static PyMutex lazy_jit_mutex = { 0 }; |
| |
| _Py_CODEUNIT * |
| _Py_LazyJitTrampoline( |
| _PyExecutorObject *executor, _PyInterpreterFrame *frame, _PyStackRef *stack_pointer, PyThreadState *tstate |
| ) { |
| PyMutex_Lock(&lazy_jit_mutex); |
| if (_Py_jit_entry == _Py_LazyJitTrampoline) { |
| _PyJitEntryFuncPtr trampoline = compile_trampoline(); |
| if (trampoline == NULL) { |
| PyMutex_Unlock(&lazy_jit_mutex); |
| Py_FatalError("Cannot allocate core JIT code"); |
| } |
| _Py_jit_entry = trampoline; |
| } |
| PyMutex_Unlock(&lazy_jit_mutex); |
| return _Py_jit_entry(executor, frame, stack_pointer, tstate); |
| } |
| |
| void |
| _PyJIT_Free(_PyExecutorObject *executor) |
| { |
| unsigned char *memory = (unsigned char *)executor->jit_code; |
| size_t size = executor->jit_size; |
| if (memory) { |
| executor->jit_code = NULL; |
| executor->jit_size = 0; |
| if (jit_free(memory, size)) { |
| PyErr_FormatUnraisable("Exception ignored while " |
| "freeing JIT memory"); |
| } |
| } |
| } |
| |
| #endif // _Py_JIT |