| /* ---------------------------------------------------------------------------- |
| Copyright (c) 2018-2023, Microsoft Research, Daan Leijen |
| This is free software; you can redistribute it and/or modify it under the |
| terms of the MIT license. A copy of the license can be found in the file |
| "LICENSE" at the root of this distribution. |
| -----------------------------------------------------------------------------*/ |
| #pragma once |
| #ifndef MIMALLOC_INTERNAL_H |
| #define MIMALLOC_INTERNAL_H |
| |
| |
| // -------------------------------------------------------------------------- |
| // This file contains the internal API's of mimalloc and various utility |
| // functions and macros. |
| // -------------------------------------------------------------------------- |
| |
| #include "types.h" |
| #include "track.h" |
| |
| #if (MI_DEBUG>0) |
| #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) |
| #else |
| #define mi_trace_message(...) |
| #endif |
| |
| #if defined(__EMSCRIPTEN__) && !defined(__wasi__) |
| #define __wasi__ |
| #endif |
| |
| #if defined(__cplusplus) |
| #define mi_decl_externc extern "C" |
| #else |
| #define mi_decl_externc |
| #endif |
| |
| // pthreads |
| #if !defined(_WIN32) && !defined(__wasi__) |
| #define MI_USE_PTHREADS |
| #include <pthread.h> |
| #endif |
| |
| // "options.c" |
| void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message); |
| void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...); |
| void _mi_warning_message(const char* fmt, ...); |
| void _mi_verbose_message(const char* fmt, ...); |
| void _mi_trace_message(const char* fmt, ...); |
| void _mi_options_init(void); |
| void _mi_error_message(int err, const char* fmt, ...); |
| |
| // random.c |
| void _mi_random_init(mi_random_ctx_t* ctx); |
| void _mi_random_init_weak(mi_random_ctx_t* ctx); |
| void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx); |
| void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx); |
| uintptr_t _mi_random_next(mi_random_ctx_t* ctx); |
| uintptr_t _mi_heap_random_next(mi_heap_t* heap); |
| uintptr_t _mi_os_random_weak(uintptr_t extra_seed); |
| static inline uintptr_t _mi_random_shuffle(uintptr_t x); |
| |
| // init.c |
| extern mi_decl_cache_align mi_stats_t _mi_stats_main; |
| extern mi_decl_cache_align const mi_page_t _mi_page_empty; |
| bool _mi_is_main_thread(void); |
| size_t _mi_current_thread_count(void); |
| bool _mi_preloading(void); // true while the C runtime is not initialized yet |
| mi_threadid_t _mi_thread_id(void) mi_attr_noexcept; |
| mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap |
| void _mi_thread_done(mi_heap_t* heap); |
| void _mi_thread_data_collect(void); |
| void _mi_tld_init(mi_tld_t* tld, mi_heap_t* bheap); |
| |
| // os.c |
| void _mi_os_init(void); // called from process init |
| void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats); |
| void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* stats); |
| void _mi_os_free_ex(void* p, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* stats); |
| |
| size_t _mi_os_page_size(void); |
| size_t _mi_os_good_alloc_size(size_t size); |
| bool _mi_os_has_overcommit(void); |
| bool _mi_os_has_virtual_reserve(void); |
| |
| bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); |
| bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats); |
| bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats); |
| bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); |
| bool _mi_os_protect(void* addr, size_t size); |
| bool _mi_os_unprotect(void* addr, size_t size); |
| bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); |
| bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats); |
| |
| void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats); |
| void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats); |
| |
| void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size); |
| bool _mi_os_use_large_page(size_t size, size_t alignment); |
| size_t _mi_os_large_page_size(void); |
| |
| void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid); |
| |
| // arena.c |
| mi_arena_id_t _mi_arena_id_none(void); |
| void _mi_arena_free(void* p, size_t size, size_t still_committed_size, mi_memid_t memid, mi_stats_t* stats); |
| void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); |
| void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); |
| bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id); |
| bool _mi_arena_contains(const void* p); |
| void _mi_arena_collect(bool force_purge, mi_stats_t* stats); |
| void _mi_arena_unsafe_destroy_all(mi_stats_t* stats); |
| |
| // "segment-map.c" |
| void _mi_segment_map_allocated_at(const mi_segment_t* segment); |
| void _mi_segment_map_freed_at(const mi_segment_t* segment); |
| |
| // "segment.c" |
| extern mi_abandoned_pool_t _mi_abandoned_default; // global abandoned pool |
| mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld); |
| void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); |
| void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); |
| bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld); |
| void _mi_segment_thread_collect(mi_segments_tld_t* tld); |
| bool _mi_abandoned_pool_visit_blocks(mi_abandoned_pool_t* pool, uint8_t page_tag, bool visit_blocks, mi_block_visit_fun* visitor, void* arg); |
| |
| |
| #if MI_HUGE_PAGE_ABANDON |
| void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); |
| #else |
| void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); |
| #endif |
| |
| uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page |
| void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld); |
| void _mi_abandoned_await_readers(mi_abandoned_pool_t *pool); |
| void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld); |
| |
| // "page.c" |
| void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc; |
| |
| void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks |
| void _mi_page_unfull(mi_page_t* page); |
| void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page |
| void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread... |
| void _mi_heap_delayed_free_all(mi_heap_t* heap); |
| bool _mi_heap_delayed_free_partial(mi_heap_t* heap); |
| void _mi_heap_collect_retired(mi_heap_t* heap, bool force); |
| |
| void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); |
| bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); |
| size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append); |
| void _mi_deferred_free(mi_heap_t* heap, bool force); |
| |
| void _mi_page_free_collect(mi_page_t* page,bool force); |
| void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments |
| |
| size_t _mi_bin_size(uint8_t bin); // for stats |
| uint8_t _mi_bin(size_t size); // for stats |
| |
| // "heap.c" |
| void _mi_heap_init_ex(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool no_reclaim, uint8_t tag); |
| void _mi_heap_destroy_pages(mi_heap_t* heap); |
| void _mi_heap_collect_abandon(mi_heap_t* heap); |
| void _mi_heap_set_default_direct(mi_heap_t* heap); |
| bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid); |
| void _mi_heap_unsafe_destroy_all(void); |
| void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page); |
| bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t *page, mi_block_visit_fun* visitor, void* arg); |
| |
| // "stats.c" |
| void _mi_stats_done(mi_stats_t* stats); |
| mi_msecs_t _mi_clock_now(void); |
| mi_msecs_t _mi_clock_end(mi_msecs_t start); |
| mi_msecs_t _mi_clock_start(void); |
| |
| // "alloc.c" |
| void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic` |
| void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept; |
| void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned` |
| void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept; |
| mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); |
| bool _mi_free_delayed_block(mi_block_t* block); |
| void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration |
| void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size); |
| |
| // option.c, c primitives |
| char _mi_toupper(char c); |
| int _mi_strnicmp(const char* s, const char* t, size_t n); |
| void _mi_strlcpy(char* dest, const char* src, size_t dest_size); |
| void _mi_strlcat(char* dest, const char* src, size_t dest_size); |
| size_t _mi_strlen(const char* s); |
| size_t _mi_strnlen(const char* s, size_t max_len); |
| |
| |
| #if MI_DEBUG>1 |
| bool _mi_page_is_valid(mi_page_t* page); |
| #endif |
| |
| |
| // ------------------------------------------------------ |
| // Branches |
| // ------------------------------------------------------ |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #define mi_unlikely(x) (__builtin_expect(!!(x),false)) |
| #define mi_likely(x) (__builtin_expect(!!(x),true)) |
| #elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L) |
| #define mi_unlikely(x) (x) [[unlikely]] |
| #define mi_likely(x) (x) [[likely]] |
| #else |
| #define mi_unlikely(x) (x) |
| #define mi_likely(x) (x) |
| #endif |
| |
| #ifndef __has_builtin |
| #define __has_builtin(x) 0 |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Error codes passed to `_mi_fatal_error` |
| All are recoverable but EFAULT is a serious error and aborts by default in secure mode. |
| For portability define undefined error codes using common Unix codes: |
| <https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html> |
| ----------------------------------------------------------- */ |
| #include <errno.h> |
| #ifndef EAGAIN // double free |
| #define EAGAIN (11) |
| #endif |
| #ifndef ENOMEM // out of memory |
| #define ENOMEM (12) |
| #endif |
| #ifndef EFAULT // corrupted free-list or meta-data |
| #define EFAULT (14) |
| #endif |
| #ifndef EINVAL // trying to free an invalid pointer |
| #define EINVAL (22) |
| #endif |
| #ifndef EOVERFLOW // count*size overflow |
| #define EOVERFLOW (75) |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Inlined definitions |
| ----------------------------------------------------------- */ |
| #define MI_UNUSED(x) (void)(x) |
| #if (MI_DEBUG>0) |
| #define MI_UNUSED_RELEASE(x) |
| #else |
| #define MI_UNUSED_RELEASE(x) MI_UNUSED(x) |
| #endif |
| |
| #define MI_INIT4(x) x(),x(),x(),x() |
| #define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x) |
| #define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x) |
| #define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x) |
| #define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x) |
| #define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x) |
| #define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x) |
| |
| |
| #include <string.h> |
| // initialize a local variable to zero; use memset as compilers optimize constant sized memset's |
| #define _mi_memzero_var(x) memset(&x,0,sizeof(x)) |
| |
| // Is `x` a power of two? (0 is considered a power of two) |
| static inline bool _mi_is_power_of_two(uintptr_t x) { |
| return ((x & (x - 1)) == 0); |
| } |
| |
| // Is a pointer aligned? |
| static inline bool _mi_is_aligned(void* p, size_t alignment) { |
| mi_assert_internal(alignment != 0); |
| return (((uintptr_t)p % alignment) == 0); |
| } |
| |
| // Align upwards |
| static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { |
| mi_assert_internal(alignment != 0); |
| uintptr_t mask = alignment - 1; |
| if ((alignment & mask) == 0) { // power of two? |
| return ((sz + mask) & ~mask); |
| } |
| else { |
| return (((sz + mask)/alignment)*alignment); |
| } |
| } |
| |
| // Align downwards |
| static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { |
| mi_assert_internal(alignment != 0); |
| uintptr_t mask = alignment - 1; |
| if ((alignment & mask) == 0) { // power of two? |
| return (sz & ~mask); |
| } |
| else { |
| return ((sz / alignment) * alignment); |
| } |
| } |
| |
| // Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`. |
| static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) { |
| mi_assert_internal(divider != 0); |
| return (divider == 0 ? size : ((size + divider - 1) / divider)); |
| } |
| |
| // Is memory zero initialized? |
| static inline bool mi_mem_is_zero(const void* p, size_t size) { |
| for (size_t i = 0; i < size; i++) { |
| if (((uint8_t*)p)[i] != 0) return false; |
| } |
| return true; |
| } |
| |
| |
| // Align a byte size to a size in _machine words_, |
| // i.e. byte size == `wsize*sizeof(void*)`. |
| static inline size_t _mi_wsize_from_size(size_t size) { |
| mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t)); |
| return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t); |
| } |
| |
| // Overflow detecting multiply |
| #if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5)) |
| #include <limits.h> // UINT_MAX, ULONG_MAX |
| #if defined(_CLOCK_T) // for Illumos |
| #undef _CLOCK_T |
| #endif |
| static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { |
| #if (SIZE_MAX == ULONG_MAX) |
| return __builtin_umull_overflow(count, size, (unsigned long *)total); |
| #elif (SIZE_MAX == UINT_MAX) |
| return __builtin_umul_overflow(count, size, (unsigned int *)total); |
| #else |
| return __builtin_umulll_overflow(count, size, (unsigned long long *)total); |
| #endif |
| } |
| #else /* __builtin_umul_overflow is unavailable */ |
| static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { |
| #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX) |
| *total = count * size; |
| // note: gcc/clang optimize this to directly check the overflow flag |
| return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count); |
| } |
| #endif |
| |
| // Safe multiply `count*size` into `total`; return `true` on overflow. |
| static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) { |
| if (count==1) { // quick check for the case where count is one (common for C++ allocators) |
| *total = size; |
| return false; |
| } |
| else if mi_unlikely(mi_mul_overflow(count, size, total)) { |
| #if MI_DEBUG > 0 |
| _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size); |
| #endif |
| *total = SIZE_MAX; |
| return true; |
| } |
| else return false; |
| } |
| |
| |
| /*---------------------------------------------------------------------------------------- |
| Heap functions |
| ------------------------------------------------------------------------------------------- */ |
| |
| extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap |
| |
| static inline bool mi_heap_is_backing(const mi_heap_t* heap) { |
| return (heap->tld->heap_backing == heap); |
| } |
| |
| static inline bool mi_heap_is_initialized(mi_heap_t* heap) { |
| mi_assert_internal(heap != NULL); |
| return (heap != &_mi_heap_empty); |
| } |
| |
| static inline uintptr_t _mi_ptr_cookie(const void* p) { |
| extern mi_heap_t _mi_heap_main; |
| mi_assert_internal(_mi_heap_main.cookie != 0); |
| return ((uintptr_t)p ^ _mi_heap_main.cookie); |
| } |
| |
| /* ----------------------------------------------------------- |
| Pages |
| ----------------------------------------------------------- */ |
| |
| static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { |
| mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE)); |
| const size_t idx = _mi_wsize_from_size(size); |
| mi_assert_internal(idx < MI_PAGES_DIRECT); |
| return heap->pages_free_direct[idx]; |
| } |
| |
| // Segment that contains the pointer |
| // Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE), |
| // and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it; |
| // therefore we align one byte before `p`. |
| static inline mi_segment_t* _mi_ptr_segment(const void* p) { |
| mi_assert_internal(p != NULL); |
| return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK); |
| } |
| |
| static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) { |
| mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0); |
| return (mi_page_t*)(s); |
| } |
| |
| static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) { |
| mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0); |
| return (mi_slice_t*)(p); |
| } |
| |
| // Segment belonging to a page |
| static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) { |
| mi_segment_t* segment = _mi_ptr_segment(page); |
| mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries)); |
| return segment; |
| } |
| |
| static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) { |
| mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset); |
| mi_assert_internal(start >= _mi_ptr_segment(slice)->slices); |
| mi_assert_internal(start->slice_offset == 0); |
| mi_assert_internal(start + start->slice_count > slice); |
| return start; |
| } |
| |
| // Get the page containing the pointer (performance critical as it is called in mi_free) |
| static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) { |
| mi_assert_internal(p > (void*)segment); |
| ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment; |
| mi_assert_internal(diff > 0 && diff <= (ptrdiff_t)MI_SEGMENT_SIZE); |
| size_t idx = (size_t)diff >> MI_SEGMENT_SLICE_SHIFT; |
| mi_assert_internal(idx <= segment->slice_entries); |
| mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx]; |
| mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data |
| mi_assert_internal(slice->slice_offset == 0); |
| mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries); |
| return mi_slice_to_page(slice); |
| } |
| |
| // Quick page start for initialized pages |
| static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { |
| return _mi_segment_page_start(segment, page, page_size); |
| } |
| |
| // Get the page containing the pointer |
| static inline mi_page_t* _mi_ptr_page(void* p) { |
| return _mi_segment_page_of(_mi_ptr_segment(p), p); |
| } |
| |
| // Get the block size of a page (special case for huge objects) |
| static inline size_t mi_page_block_size(const mi_page_t* page) { |
| const size_t bsize = page->xblock_size; |
| mi_assert_internal(bsize > 0); |
| if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) { |
| return bsize; |
| } |
| else { |
| size_t psize; |
| _mi_segment_page_start(_mi_page_segment(page), page, &psize); |
| return psize; |
| } |
| } |
| |
| static inline bool mi_page_is_huge(const mi_page_t* page) { |
| return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE); |
| } |
| |
| // Get the usable block size of a page without fixed padding. |
| // This may still include internal padding due to alignment and rounding up size classes. |
| static inline size_t mi_page_usable_block_size(const mi_page_t* page) { |
| return mi_page_block_size(page) - MI_PADDING_SIZE; |
| } |
| |
| // size of a segment |
| static inline size_t mi_segment_size(mi_segment_t* segment) { |
| return segment->segment_slices * MI_SEGMENT_SLICE_SIZE; |
| } |
| |
| static inline uint8_t* mi_segment_end(mi_segment_t* segment) { |
| return (uint8_t*)segment + mi_segment_size(segment); |
| } |
| |
| // Thread free access |
| static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) { |
| return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3); |
| } |
| |
| static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) { |
| return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3); |
| } |
| |
| // Heap access |
| static inline mi_heap_t* mi_page_heap(const mi_page_t* page) { |
| return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap)); |
| } |
| |
| static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) { |
| mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING); |
| mi_atomic_store_release(&page->xheap,(uintptr_t)heap); |
| } |
| |
| // Thread free flag helpers |
| static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) { |
| return (mi_block_t*)(tf & ~0x03); |
| } |
| static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) { |
| return (mi_delayed_t)(tf & 0x03); |
| } |
| static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) { |
| return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed); |
| } |
| static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) { |
| return mi_tf_make(mi_tf_block(tf),delayed); |
| } |
| static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) { |
| return mi_tf_make(block, mi_tf_delayed(tf)); |
| } |
| |
| // are all blocks in a page freed? |
| // note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`. |
| static inline bool mi_page_all_free(const mi_page_t* page) { |
| mi_assert_internal(page != NULL); |
| return (page->used == 0); |
| } |
| |
| // are there any available blocks? |
| static inline bool mi_page_has_any_available(const mi_page_t* page) { |
| mi_assert_internal(page != NULL && page->reserved > 0); |
| return (page->used < page->reserved || (mi_page_thread_free(page) != NULL)); |
| } |
| |
| // are there immediately available blocks, i.e. blocks available on the free list. |
| static inline bool mi_page_immediate_available(const mi_page_t* page) { |
| mi_assert_internal(page != NULL); |
| return (page->free != NULL); |
| } |
| |
| // is more than 7/8th of a page in use? |
| static inline bool mi_page_mostly_used(const mi_page_t* page) { |
| if (page==NULL) return true; |
| uint16_t frac = page->reserved / 8U; |
| return (page->reserved - page->used <= frac); |
| } |
| |
| static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) { |
| return &((mi_heap_t*)heap)->pages[_mi_bin(size)]; |
| } |
| |
| |
| |
| //----------------------------------------------------------- |
| // Page flags |
| //----------------------------------------------------------- |
| static inline bool mi_page_is_in_full(const mi_page_t* page) { |
| return page->flags.x.in_full; |
| } |
| |
| static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) { |
| page->flags.x.in_full = in_full; |
| } |
| |
| static inline bool mi_page_has_aligned(const mi_page_t* page) { |
| return page->flags.x.has_aligned; |
| } |
| |
| static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) { |
| page->flags.x.has_aligned = has_aligned; |
| } |
| |
| |
| /* ------------------------------------------------------------------- |
| Encoding/Decoding the free list next pointers |
| |
| This is to protect against buffer overflow exploits where the |
| free list is mutated. Many hardened allocators xor the next pointer `p` |
| with a secret key `k1`, as `p^k1`. This prevents overwriting with known |
| values but might be still too weak: if the attacker can guess |
| the pointer `p` this can reveal `k1` (since `p^k1^p == k1`). |
| Moreover, if multiple blocks can be read as well, the attacker can |
| xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot |
| about the pointers (and subsequently `k1`). |
| |
| Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`. |
| Since these operations are not associative, the above approaches do not |
| work so well any more even if the `p` can be guesstimated. For example, |
| for the read case we can subtract two entries to discard the `+k1` term, |
| but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best. |
| We include the left-rotation since xor and addition are otherwise linear |
| in the lowest bit. Finally, both keys are unique per page which reduces |
| the re-use of keys by a large factor. |
| |
| We also pass a separate `null` value to be used as `NULL` or otherwise |
| `(k2<<<k1)+k1` would appear (too) often as a sentinel value. |
| ------------------------------------------------------------------- */ |
| |
| static inline bool mi_is_in_same_segment(const void* p, const void* q) { |
| return (_mi_ptr_segment(p) == _mi_ptr_segment(q)); |
| } |
| |
| static inline bool mi_is_in_same_page(const void* p, const void* q) { |
| mi_segment_t* segment = _mi_ptr_segment(p); |
| if (_mi_ptr_segment(q) != segment) return false; |
| // assume q may be invalid // return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q)); |
| mi_page_t* page = _mi_segment_page_of(segment, p); |
| size_t psize; |
| uint8_t* start = _mi_segment_page_start(segment, page, &psize); |
| return (start <= (uint8_t*)q && (uint8_t*)q < start + psize); |
| } |
| |
| static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) { |
| shift %= MI_INTPTR_BITS; |
| return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift)))); |
| } |
| static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) { |
| shift %= MI_INTPTR_BITS; |
| return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift)))); |
| } |
| |
| static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) { |
| void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]); |
| return (p==null ? NULL : p); |
| } |
| |
| static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) { |
| uintptr_t x = (uintptr_t)(p==NULL ? null : p); |
| return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; |
| } |
| |
| static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) { |
| mi_track_mem_defined(block,sizeof(mi_block_t)); |
| mi_block_t* next; |
| #ifdef MI_ENCODE_FREELIST |
| next = (mi_block_t*)mi_ptr_decode(null, mi_atomic_load_relaxed((_Atomic(mi_encoded_t)*)&block->next), keys); |
| #else |
| MI_UNUSED(keys); MI_UNUSED(null); |
| next = (mi_block_t*)mi_atomic_load_relaxed((_Atomic(mi_encoded_t)*)&block->next); |
| #endif |
| mi_track_mem_noaccess(block,sizeof(mi_block_t)); |
| return next; |
| } |
| |
| static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) { |
| mi_track_mem_undefined(block,sizeof(mi_block_t)); |
| #ifdef MI_ENCODE_FREELIST |
| mi_atomic_store_relaxed(&block->next, mi_ptr_encode(null, next, keys)); |
| #else |
| MI_UNUSED(keys); MI_UNUSED(null); |
| mi_atomic_store_relaxed(&block->next, (mi_encoded_t)next); |
| #endif |
| mi_track_mem_noaccess(block,sizeof(mi_block_t)); |
| } |
| |
| static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { |
| #ifdef MI_ENCODE_FREELIST |
| mi_block_t* next = mi_block_nextx(page,block,page->keys); |
| // check for free list corruption: is `next` at least in the same page? |
| // TODO: check if `next` is `page->block_size` aligned? |
| if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) { |
| _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next); |
| next = NULL; |
| } |
| return next; |
| #else |
| MI_UNUSED(page); |
| return mi_block_nextx(page,block,NULL); |
| #endif |
| } |
| |
| static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { |
| #ifdef MI_ENCODE_FREELIST |
| mi_block_set_nextx(page,block,next, page->keys); |
| #else |
| MI_UNUSED(page); |
| mi_block_set_nextx(page,block,next,NULL); |
| #endif |
| } |
| |
| |
| // ------------------------------------------------------------------- |
| // commit mask |
| // ------------------------------------------------------------------- |
| |
| static inline void mi_commit_mask_create_empty(mi_commit_mask_t* cm) { |
| for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { |
| cm->mask[i] = 0; |
| } |
| } |
| |
| static inline void mi_commit_mask_create_full(mi_commit_mask_t* cm) { |
| for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { |
| cm->mask[i] = ~((size_t)0); |
| } |
| } |
| |
| static inline bool mi_commit_mask_is_empty(const mi_commit_mask_t* cm) { |
| for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { |
| if (cm->mask[i] != 0) return false; |
| } |
| return true; |
| } |
| |
| static inline bool mi_commit_mask_is_full(const mi_commit_mask_t* cm) { |
| for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { |
| if (cm->mask[i] != ~((size_t)0)) return false; |
| } |
| return true; |
| } |
| |
| // defined in `segment.c`: |
| size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total); |
| size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx); |
| |
| #define mi_commit_mask_foreach(cm,idx,count) \ |
| idx = 0; \ |
| while ((count = _mi_commit_mask_next_run(cm,&idx)) > 0) { |
| |
| #define mi_commit_mask_foreach_end() \ |
| idx += count; \ |
| } |
| |
| |
| |
| /* ----------------------------------------------------------- |
| memory id's |
| ----------------------------------------------------------- */ |
| |
| static inline mi_memid_t _mi_memid_create(mi_memkind_t memkind) { |
| mi_memid_t memid; |
| _mi_memzero_var(memid); |
| memid.memkind = memkind; |
| return memid; |
| } |
| |
| static inline mi_memid_t _mi_memid_none(void) { |
| return _mi_memid_create(MI_MEM_NONE); |
| } |
| |
| static inline mi_memid_t _mi_memid_create_os(bool committed, bool is_zero, bool is_large) { |
| mi_memid_t memid = _mi_memid_create(MI_MEM_OS); |
| memid.initially_committed = committed; |
| memid.initially_zero = is_zero; |
| memid.is_pinned = is_large; |
| return memid; |
| } |
| |
| |
| // ------------------------------------------------------------------- |
| // Fast "random" shuffle |
| // ------------------------------------------------------------------- |
| |
| static inline uintptr_t _mi_random_shuffle(uintptr_t x) { |
| if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros |
| #if (MI_INTPTR_SIZE==8) |
| // by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c> |
| x ^= x >> 30; |
| x *= 0xbf58476d1ce4e5b9UL; |
| x ^= x >> 27; |
| x *= 0x94d049bb133111ebUL; |
| x ^= x >> 31; |
| #elif (MI_INTPTR_SIZE==4) |
| // by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/> |
| x ^= x >> 16; |
| x *= 0x7feb352dUL; |
| x ^= x >> 15; |
| x *= 0x846ca68bUL; |
| x ^= x >> 16; |
| #endif |
| return x; |
| } |
| |
| // ------------------------------------------------------------------- |
| // Optimize numa node access for the common case (= one node) |
| // ------------------------------------------------------------------- |
| |
| int _mi_os_numa_node_get(mi_os_tld_t* tld); |
| size_t _mi_os_numa_node_count_get(void); |
| |
| extern _Atomic(size_t) _mi_numa_node_count; |
| static inline int _mi_os_numa_node(mi_os_tld_t* tld) { |
| if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; } |
| else return _mi_os_numa_node_get(tld); |
| } |
| static inline size_t _mi_os_numa_node_count(void) { |
| const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count); |
| if mi_likely(count > 0) { return count; } |
| else return _mi_os_numa_node_count_get(); |
| } |
| |
| |
| |
| // ----------------------------------------------------------------------- |
| // Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero) |
| // ----------------------------------------------------------------------- |
| |
| #if defined(__GNUC__) |
| |
| #include <limits.h> // LONG_MAX |
| #define MI_HAVE_FAST_BITSCAN |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (INTPTR_MAX == LONG_MAX) |
| return __builtin_clzl(x); |
| #else |
| return __builtin_clzll(x); |
| #endif |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (INTPTR_MAX == LONG_MAX) |
| return __builtin_ctzl(x); |
| #else |
| return __builtin_ctzll(x); |
| #endif |
| } |
| |
| #elif defined(_MSC_VER) |
| |
| #include <limits.h> // LONG_MAX |
| #include <intrin.h> // BitScanReverse64 |
| #define MI_HAVE_FAST_BITSCAN |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| unsigned long idx; |
| #if (INTPTR_MAX == LONG_MAX) |
| _BitScanReverse(&idx, x); |
| #else |
| _BitScanReverse64(&idx, x); |
| #endif |
| return ((MI_INTPTR_BITS - 1) - idx); |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| unsigned long idx; |
| #if (INTPTR_MAX == LONG_MAX) |
| _BitScanForward(&idx, x); |
| #else |
| _BitScanForward64(&idx, x); |
| #endif |
| return idx; |
| } |
| |
| #else |
| static inline size_t mi_ctz32(uint32_t x) { |
| // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> |
| static const unsigned char debruijn[32] = { |
| 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
| 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 |
| }; |
| if (x==0) return 32; |
| return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27]; |
| } |
| static inline size_t mi_clz32(uint32_t x) { |
| // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> |
| static const uint8_t debruijn[32] = { |
| 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1, |
| 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0 |
| }; |
| if (x==0) return 32; |
| x |= x >> 1; |
| x |= x >> 2; |
| x |= x >> 4; |
| x |= x >> 8; |
| x |= x >> 16; |
| return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27]; |
| } |
| |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (MI_INTPTR_BITS <= 32) |
| return mi_clz32((uint32_t)x); |
| #else |
| size_t count = mi_clz32((uint32_t)(x >> 32)); |
| if (count < 32) return count; |
| return (32 + mi_clz32((uint32_t)x)); |
| #endif |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (MI_INTPTR_BITS <= 32) |
| return mi_ctz32((uint32_t)x); |
| #else |
| size_t count = mi_ctz32((uint32_t)x); |
| if (count < 32) return count; |
| return (32 + mi_ctz32((uint32_t)(x>>32))); |
| #endif |
| } |
| |
| #endif |
| |
| // "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero) |
| static inline size_t mi_bsr(uintptr_t x) { |
| return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x)); |
| } |
| |
| |
| // --------------------------------------------------------------------------------- |
| // Provide our own `_mi_memcpy` for potential performance optimizations. |
| // |
| // For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if |
| // we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support |
| // (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253. |
| // --------------------------------------------------------------------------------- |
| |
| #if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) |
| #include <intrin.h> |
| extern bool _mi_cpu_has_fsrm; |
| static inline void _mi_memcpy(void* dst, const void* src, size_t n) { |
| if (_mi_cpu_has_fsrm) { |
| __movsb((unsigned char*)dst, (const unsigned char*)src, n); |
| } |
| else { |
| memcpy(dst, src, n); |
| } |
| } |
| static inline void _mi_memzero(void* dst, size_t n) { |
| if (_mi_cpu_has_fsrm) { |
| __stosb((unsigned char*)dst, 0, n); |
| } |
| else { |
| memset(dst, 0, n); |
| } |
| } |
| #else |
| static inline void _mi_memcpy(void* dst, const void* src, size_t n) { |
| memcpy(dst, src, n); |
| } |
| static inline void _mi_memzero(void* dst, size_t n) { |
| memset(dst, 0, n); |
| } |
| #endif |
| |
| // ------------------------------------------------------------------------------- |
| // The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned |
| // This is used for example in `mi_realloc`. |
| // ------------------------------------------------------------------------------- |
| |
| #if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__) |
| // On GCC/CLang we provide a hint that the pointers are word aligned. |
| static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { |
| mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); |
| void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); |
| const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE); |
| _mi_memcpy(adst, asrc, n); |
| } |
| |
| static inline void _mi_memzero_aligned(void* dst, size_t n) { |
| mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); |
| void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); |
| _mi_memzero(adst, n); |
| } |
| #else |
| // Default fallback on `_mi_memcpy` |
| static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { |
| mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); |
| _mi_memcpy(dst, src, n); |
| } |
| |
| static inline void _mi_memzero_aligned(void* dst, size_t n) { |
| mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); |
| _mi_memzero(dst, n); |
| } |
| #endif |
| |
| |
| #endif |