| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** Utility functions used throughout sqlite. |
| ** |
| ** This file contains functions for allocating memory, comparing |
| ** strings, and stuff like that. |
| ** |
| ** $Id: util.c,v 1.189 2006/04/08 19:14:53 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include "os.h" |
| #include <stdarg.h> |
| #include <ctype.h> |
| |
| /* |
| ** MALLOC WRAPPER ARCHITECTURE |
| ** |
| ** The sqlite code accesses dynamic memory allocation/deallocation by invoking |
| ** the following six APIs (which may be implemented as macros). |
| ** |
| ** sqlite3Malloc() |
| ** sqlite3MallocRaw() |
| ** sqlite3Realloc() |
| ** sqlite3ReallocOrFree() |
| ** sqlite3Free() |
| ** sqlite3AllocSize() |
| ** |
| ** The function sqlite3FreeX performs the same task as sqlite3Free and is |
| ** guaranteed to be a real function. The same holds for sqlite3MallocX |
| ** |
| ** The above APIs are implemented in terms of the functions provided in the |
| ** operating-system interface. The OS interface is never accessed directly |
| ** by code outside of this file. |
| ** |
| ** sqlite3OsMalloc() |
| ** sqlite3OsRealloc() |
| ** sqlite3OsFree() |
| ** sqlite3OsAllocationSize() |
| ** |
| ** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke |
| ** sqlite3_release_memory() if a call to sqlite3OsMalloc() or |
| ** sqlite3OsRealloc() fails (or if the soft-heap-limit for the thread is |
| ** exceeded). Function sqlite3Malloc() usually invokes |
| ** sqlite3MallocRaw(). |
| ** |
| ** MALLOC TEST WRAPPER ARCHITECTURE |
| ** |
| ** The test wrapper provides extra test facilities to ensure the library |
| ** does not leak memory and handles the failure of the underlying OS level |
| ** allocation system correctly. It is only present if the library is |
| ** compiled with the SQLITE_MEMDEBUG macro set. |
| ** |
| ** * Guardposts to detect overwrites. |
| ** * Ability to cause a specific Malloc() or Realloc() to fail. |
| ** * Audit outstanding memory allocations (i.e check for leaks). |
| */ |
| |
| #define MAX(x,y) ((x)>(y)?(x):(y)) |
| |
| #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO) |
| /* |
| ** Set the soft heap-size limit for the current thread. Passing a negative |
| ** value indicates no limit. |
| */ |
| void sqlite3_soft_heap_limit(int n){ |
| ThreadData *pTd = sqlite3ThreadData(); |
| if( pTd ){ |
| pTd->nSoftHeapLimit = n; |
| } |
| sqlite3ReleaseThreadData(); |
| } |
| |
| /* |
| ** Release memory held by SQLite instances created by the current thread. |
| */ |
| int sqlite3_release_memory(int n){ |
| return sqlite3pager_release_memory(n); |
| } |
| #else |
| /* If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, then define a version |
| ** of sqlite3_release_memory() to be used by other code in this file. |
| ** This is done for no better reason than to reduce the number of |
| ** pre-processor #ifndef statements. |
| */ |
| #define sqlite3_release_memory(x) 0 /* 0 == no memory freed */ |
| #endif |
| |
| #ifdef SQLITE_MEMDEBUG |
| /*-------------------------------------------------------------------------- |
| ** Begin code for memory allocation system test layer. |
| ** |
| ** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro. |
| ** |
| ** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe) |
| ** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts) |
| ** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc) |
| */ |
| |
| /* Figure out whether or not to store backtrace() information for each malloc. |
| ** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or |
| ** greater and glibc is in use. If we don't want to use backtrace(), then just |
| ** define it as an empty macro and set the amount of space reserved to 0. |
| */ |
| #if defined(__GLIBC__) && SQLITE_MEMDEBUG>2 |
| extern int backtrace(void **, int); |
| #define TESTALLOC_STACKSIZE 128 |
| #define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*)) |
| #else |
| #define backtrace(x, y) |
| #define TESTALLOC_STACKSIZE 0 |
| #define TESTALLOC_STACKFRAMES 0 |
| #endif |
| |
| /* |
| ** Number of 32-bit guard words. This should probably be a multiple of |
| ** 2 since on 64-bit machines we want the value returned by sqliteMalloc() |
| ** to be 8-byte aligned. |
| */ |
| #ifndef TESTALLOC_NGUARD |
| # define TESTALLOC_NGUARD 2 |
| #endif |
| |
| /* |
| ** Size reserved for storing file-name along with each malloc()ed blob. |
| */ |
| #define TESTALLOC_FILESIZE 64 |
| |
| /* |
| ** Size reserved for storing the user string. Each time a Malloc() or Realloc() |
| ** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by |
| ** sqlite3_malloc_id are stored along with the other test system metadata. |
| */ |
| #define TESTALLOC_USERSIZE 64 |
| const char *sqlite3_malloc_id = 0; |
| |
| /* |
| ** Blocks used by the test layer have the following format: |
| ** |
| ** <sizeof(void *) pNext pointer> |
| ** <sizeof(void *) pPrev pointer> |
| ** <TESTALLOC_NGUARD 32-bit guard words> |
| ** <The application level allocation> |
| ** <TESTALLOC_NGUARD 32-bit guard words> |
| ** <32-bit line number> |
| ** <TESTALLOC_FILESIZE bytes containing null-terminated file name> |
| ** <TESTALLOC_STACKSIZE bytes of backtrace() output> |
| */ |
| |
| #define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2) |
| #define TESTALLOC_OFFSET_DATA(p) ( \ |
| TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \ |
| ) |
| #define TESTALLOC_OFFSET_GUARD2(p) ( \ |
| TESTALLOC_OFFSET_DATA(p) + sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD \ |
| ) |
| #define TESTALLOC_OFFSET_LINENUMBER(p) ( \ |
| TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \ |
| ) |
| #define TESTALLOC_OFFSET_FILENAME(p) ( \ |
| TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \ |
| ) |
| #define TESTALLOC_OFFSET_USER(p) ( \ |
| TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \ |
| ) |
| #define TESTALLOC_OFFSET_STACK(p) ( \ |
| TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \ |
| (TESTALLOC_OFFSET_USER(p) % 8) \ |
| ) |
| |
| #define TESTALLOC_OVERHEAD ( \ |
| sizeof(void *)*2 + /* pPrev and pNext pointers */ \ |
| TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \ |
| sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \ |
| TESTALLOC_USERSIZE + /* User string */ \ |
| TESTALLOC_STACKSIZE /* backtrace() stack */ \ |
| ) |
| |
| |
| /* |
| ** For keeping track of the number of mallocs and frees. This |
| ** is used to check for memory leaks. The iMallocFail and iMallocReset |
| ** values are used to simulate malloc() failures during testing in |
| ** order to verify that the library correctly handles an out-of-memory |
| ** condition. |
| */ |
| int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ |
| int sqlite3_nFree; /* Number of sqliteFree() calls */ |
| int sqlite3_memUsed; /* TODO Total memory obtained from malloc */ |
| int sqlite3_memMax; /* TODO Mem usage high-water mark */ |
| int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ |
| int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */ |
| |
| void *sqlite3_pFirst = 0; /* Pointer to linked list of allocations */ |
| int sqlite3_nMaxAlloc = 0; /* High water mark of ThreadData.nAlloc */ |
| int sqlite3_mallocDisallowed = 0; /* assert() in sqlite3Malloc() if set */ |
| int sqlite3_isFail = 0; /* True if all malloc calls should fail */ |
| const char *sqlite3_zFile = 0; /* Filename to associate debug info with */ |
| int sqlite3_iLine = 0; /* Line number for debug info */ |
| |
| /* |
| ** Check for a simulated memory allocation failure. Return true if |
| ** the failure should be simulated. Return false to proceed as normal. |
| */ |
| int sqlite3TestMallocFail(){ |
| if( sqlite3_isFail ){ |
| return 1; |
| } |
| if( sqlite3_iMallocFail>=0 ){ |
| sqlite3_iMallocFail--; |
| if( sqlite3_iMallocFail==0 ){ |
| sqlite3_iMallocFail = sqlite3_iMallocReset; |
| sqlite3_isFail = 1; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** The argument is a pointer returned by sqlite3OsMalloc() or xRealloc(). |
| ** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the |
| ** values set by the applyGuards() function. |
| */ |
| static void checkGuards(u32 *p) |
| { |
| int i; |
| char *zAlloc = (char *)p; |
| char *z; |
| |
| /* First set of guard words */ |
| z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; |
| for(i=0; i<TESTALLOC_NGUARD; i++){ |
| assert(((u32 *)z)[i]==0xdead1122); |
| } |
| |
| /* Second set of guard words */ |
| z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)]; |
| for(i=0; i<TESTALLOC_NGUARD; i++){ |
| u32 guard = 0; |
| memcpy(&guard, &z[i*sizeof(u32)], sizeof(u32)); |
| assert(guard==0xdead3344); |
| } |
| } |
| |
| /* |
| ** The argument is a pointer returned by sqlite3OsMalloc() or Realloc(). The |
| ** first and last (TESTALLOC_NGUARD*4) bytes are set to known values for use as |
| ** guard-posts. |
| */ |
| static void applyGuards(u32 *p) |
| { |
| int i; |
| char *z; |
| char *zAlloc = (char *)p; |
| |
| /* First set of guard words */ |
| z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; |
| for(i=0; i<TESTALLOC_NGUARD; i++){ |
| ((u32 *)z)[i] = 0xdead1122; |
| } |
| |
| /* Second set of guard words */ |
| z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)]; |
| for(i=0; i<TESTALLOC_NGUARD; i++){ |
| static const int guard = 0xdead3344; |
| memcpy(&z[i*sizeof(u32)], &guard, sizeof(u32)); |
| } |
| |
| /* Line number */ |
| z = &((char *)z)[TESTALLOC_NGUARD*sizeof(u32)]; /* Guard words */ |
| z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; |
| memcpy(z, &sqlite3_iLine, sizeof(u32)); |
| |
| /* File name */ |
| z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; |
| strncpy(z, sqlite3_zFile, TESTALLOC_FILESIZE); |
| z[TESTALLOC_FILESIZE - 1] = '\0'; |
| |
| /* User string */ |
| z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; |
| z[0] = 0; |
| if( sqlite3_malloc_id ){ |
| strncpy(z, sqlite3_malloc_id, TESTALLOC_USERSIZE); |
| z[TESTALLOC_USERSIZE-1] = 0; |
| } |
| |
| /* backtrace() stack */ |
| z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; |
| backtrace((void **)z, TESTALLOC_STACKFRAMES); |
| |
| /* Sanity check to make sure checkGuards() is working */ |
| checkGuards(p); |
| } |
| |
| /* |
| ** The argument is a malloc()ed pointer as returned by the test-wrapper. |
| ** Return a pointer to the Os level allocation. |
| */ |
| static void *getOsPointer(void *p) |
| { |
| char *z = (char *)p; |
| return (void *)(&z[-1 * TESTALLOC_OFFSET_DATA(p)]); |
| } |
| |
| |
| #if SQLITE_MEMDEBUG>1 |
| /* |
| ** The argument points to an Os level allocation. Link it into the threads list |
| ** of allocations. |
| */ |
| static void linkAlloc(void *p){ |
| void **pp = (void **)p; |
| pp[0] = 0; |
| pp[1] = sqlite3_pFirst; |
| if( sqlite3_pFirst ){ |
| ((void **)sqlite3_pFirst)[0] = p; |
| } |
| sqlite3_pFirst = p; |
| } |
| |
| /* |
| ** The argument points to an Os level allocation. Unlinke it from the threads |
| ** list of allocations. |
| */ |
| static void unlinkAlloc(void *p) |
| { |
| void **pp = (void **)p; |
| if( p==sqlite3_pFirst ){ |
| assert(!pp[0]); |
| assert(!pp[1] || ((void **)(pp[1]))[0]==p); |
| sqlite3_pFirst = pp[1]; |
| if( sqlite3_pFirst ){ |
| ((void **)sqlite3_pFirst)[0] = 0; |
| } |
| }else{ |
| void **pprev = pp[0]; |
| void **pnext = pp[1]; |
| assert(pprev); |
| assert(pprev[1]==p); |
| pprev[1] = (void *)pnext; |
| if( pnext ){ |
| assert(pnext[0]==p); |
| pnext[0] = (void *)pprev; |
| } |
| } |
| } |
| |
| /* |
| ** Pointer p is a pointer to an OS level allocation that has just been |
| ** realloc()ed. Set the list pointers that point to this entry to it's new |
| ** location. |
| */ |
| static void relinkAlloc(void *p) |
| { |
| void **pp = (void **)p; |
| if( pp[0] ){ |
| ((void **)(pp[0]))[1] = p; |
| }else{ |
| sqlite3_pFirst = p; |
| } |
| if( pp[1] ){ |
| ((void **)(pp[1]))[0] = p; |
| } |
| } |
| #else |
| #define linkAlloc(x) |
| #define relinkAlloc(x) |
| #define unlinkAlloc(x) |
| #endif |
| |
| /* |
| ** This function sets the result of the Tcl interpreter passed as an argument |
| ** to a list containing an entry for each currently outstanding call made to |
| ** sqliteMalloc and friends by the current thread. Each list entry is itself a |
| ** list, consisting of the following (in order): |
| ** |
| ** * The number of bytes allocated |
| ** * The __FILE__ macro at the time of the sqliteMalloc() call. |
| ** * The __LINE__ macro ... |
| ** * The value of the sqlite3_malloc_id variable ... |
| ** * The output of backtrace() (if available) ... |
| ** |
| ** Todo: We could have a version of this function that outputs to stdout, |
| ** to debug memory leaks when Tcl is not available. |
| */ |
| #if defined(TCLSH) && defined(SQLITE_DEBUG) && SQLITE_MEMDEBUG>1 |
| #include <tcl.h> |
| int sqlite3OutstandingMallocs(Tcl_Interp *interp){ |
| void *p; |
| Tcl_Obj *pRes = Tcl_NewObj(); |
| Tcl_IncrRefCount(pRes); |
| |
| |
| for(p=sqlite3_pFirst; p; p=((void **)p)[1]){ |
| Tcl_Obj *pEntry = Tcl_NewObj(); |
| Tcl_Obj *pStack = Tcl_NewObj(); |
| char *z; |
| u32 iLine; |
| int nBytes = sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD; |
| char *zAlloc = (char *)p; |
| int i; |
| |
| Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes)); |
| |
| z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; |
| Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); |
| |
| z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; |
| memcpy(&iLine, z, sizeof(u32)); |
| Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine)); |
| |
| z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; |
| Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); |
| |
| z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; |
| for(i=0; i<TESTALLOC_STACKFRAMES; i++){ |
| char zHex[128]; |
| sprintf(zHex, "%p", ((void **)z)[i]); |
| Tcl_ListObjAppendElement(0, pStack, Tcl_NewStringObj(zHex, -1)); |
| } |
| |
| Tcl_ListObjAppendElement(0, pEntry, pStack); |
| Tcl_ListObjAppendElement(0, pRes, pEntry); |
| } |
| |
| Tcl_ResetResult(interp); |
| Tcl_SetObjResult(interp, pRes); |
| Tcl_DecrRefCount(pRes); |
| return TCL_OK; |
| } |
| #endif |
| |
| /* |
| ** This is the test layer's wrapper around sqlite3OsMalloc(). |
| */ |
| static void * OSMALLOC(int n){ |
| sqlite3OsEnterMutex(); |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| sqlite3_nMaxAlloc = |
| MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc); |
| #endif |
| assert( !sqlite3_mallocDisallowed ); |
| if( !sqlite3TestMallocFail() ){ |
| u32 *p; |
| p = (u32 *)sqlite3OsMalloc(n + TESTALLOC_OVERHEAD); |
| assert(p); |
| sqlite3_nMalloc++; |
| applyGuards(p); |
| linkAlloc(p); |
| sqlite3OsLeaveMutex(); |
| return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); |
| } |
| sqlite3OsLeaveMutex(); |
| return 0; |
| } |
| |
| static int OSSIZEOF(void *p){ |
| if( p ){ |
| u32 *pOs = (u32 *)getOsPointer(p); |
| return sqlite3OsAllocationSize(pOs) - TESTALLOC_OVERHEAD; |
| } |
| return 0; |
| } |
| |
| /* |
| ** This is the test layer's wrapper around sqlite3OsFree(). The argument is a |
| ** pointer to the space allocated for the application to use. |
| */ |
| static void OSFREE(void *pFree){ |
| u32 *p; /* Pointer to the OS-layer allocation */ |
| sqlite3OsEnterMutex(); |
| p = (u32 *)getOsPointer(pFree); |
| checkGuards(p); |
| unlinkAlloc(p); |
| memset(pFree, 0x55, OSSIZEOF(pFree)); |
| sqlite3OsFree(p); |
| sqlite3_nFree++; |
| sqlite3OsLeaveMutex(); |
| } |
| |
| /* |
| ** This is the test layer's wrapper around sqlite3OsRealloc(). |
| */ |
| static void * OSREALLOC(void *pRealloc, int n){ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| sqlite3_nMaxAlloc = |
| MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc); |
| #endif |
| assert( !sqlite3_mallocDisallowed ); |
| if( !sqlite3TestMallocFail() ){ |
| u32 *p = (u32 *)getOsPointer(pRealloc); |
| checkGuards(p); |
| p = sqlite3OsRealloc(p, n + TESTALLOC_OVERHEAD); |
| applyGuards(p); |
| relinkAlloc(p); |
| return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); |
| } |
| return 0; |
| } |
| |
| static void OSMALLOC_FAILED(){ |
| sqlite3_isFail = 0; |
| } |
| |
| #else |
| /* Define macros to call the sqlite3OsXXX interface directly if |
| ** the SQLITE_MEMDEBUG macro is not defined. |
| */ |
| #define OSMALLOC(x) sqlite3OsMalloc(x) |
| #define OSREALLOC(x,y) sqlite3OsRealloc(x,y) |
| #define OSFREE(x) sqlite3OsFree(x) |
| #define OSSIZEOF(x) sqlite3OsAllocationSize(x) |
| #define OSMALLOC_FAILED() |
| |
| #endif /* SQLITE_MEMDEBUG */ |
| /* |
| ** End code for memory allocation system test layer. |
| **--------------------------------------------------------------------------*/ |
| |
| /* |
| ** This routine is called when we are about to allocate n additional bytes |
| ** of memory. If the new allocation will put is over the soft allocation |
| ** limit, then invoke sqlite3_release_memory() to try to release some |
| ** memory before continuing with the allocation. |
| ** |
| ** This routine also makes sure that the thread-specific-data (TSD) has |
| ** be allocated. If it has not and can not be allocated, then return |
| ** false. The updateMemoryUsedCount() routine below will deallocate |
| ** the TSD if it ought to be. |
| ** |
| ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is |
| ** a no-op |
| */ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| static int enforceSoftLimit(int n){ |
| ThreadData *pTsd = sqlite3ThreadData(); |
| if( pTsd==0 ){ |
| return 0; |
| } |
| assert( pTsd->nAlloc>=0 ); |
| if( n>0 && pTsd->nSoftHeapLimit>0 ){ |
| while( pTsd->nAlloc+n>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ){} |
| } |
| return 1; |
| } |
| #else |
| # define enforceSoftLimit(X) 1 |
| #endif |
| |
| /* |
| ** Update the count of total outstanding memory that is held in |
| ** thread-specific-data (TSD). If after this update the TSD is |
| ** no longer being used, then deallocate it. |
| ** |
| ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is |
| ** a no-op |
| */ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| static void updateMemoryUsedCount(int n){ |
| ThreadData *pTsd = sqlite3ThreadData(); |
| if( pTsd ){ |
| pTsd->nAlloc += n; |
| assert( pTsd->nAlloc>=0 ); |
| if( pTsd->nAlloc==0 && pTsd->nSoftHeapLimit==0 ){ |
| sqlite3ReleaseThreadData(); |
| } |
| } |
| } |
| #else |
| #define updateMemoryUsedCount(x) /* no-op */ |
| #endif |
| |
| /* |
| ** Allocate and return N bytes of uninitialised memory by calling |
| ** sqlite3OsMalloc(). If the Malloc() call fails, attempt to free memory |
| ** by calling sqlite3_release_memory(). |
| */ |
| void *sqlite3MallocRaw(int n, int doMemManage){ |
| void *p = 0; |
| if( n>0 && !sqlite3MallocFailed() && (!doMemManage || enforceSoftLimit(n)) ){ |
| while( (p = OSMALLOC(n))==0 && sqlite3_release_memory(n) ){} |
| if( !p ){ |
| sqlite3FailedMalloc(); |
| OSMALLOC_FAILED(); |
| }else if( doMemManage ){ |
| updateMemoryUsedCount(OSSIZEOF(p)); |
| } |
| } |
| return p; |
| } |
| |
| /* |
| ** Resize the allocation at p to n bytes by calling sqlite3OsRealloc(). The |
| ** pointer to the new allocation is returned. If the Realloc() call fails, |
| ** attempt to free memory by calling sqlite3_release_memory(). |
| */ |
| void *sqlite3Realloc(void *p, int n){ |
| if( sqlite3MallocFailed() ){ |
| return 0; |
| } |
| |
| if( !p ){ |
| return sqlite3Malloc(n, 1); |
| }else{ |
| void *np = 0; |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| int origSize = OSSIZEOF(p); |
| #endif |
| if( enforceSoftLimit(n - origSize) ){ |
| while( (np = OSREALLOC(p, n))==0 && sqlite3_release_memory(n) ){} |
| if( !np ){ |
| sqlite3FailedMalloc(); |
| OSMALLOC_FAILED(); |
| }else{ |
| updateMemoryUsedCount(OSSIZEOF(np) - origSize); |
| } |
| } |
| return np; |
| } |
| } |
| |
| /* |
| ** Free the memory pointed to by p. p must be either a NULL pointer or a |
| ** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc(). |
| */ |
| void sqlite3FreeX(void *p){ |
| if( p ){ |
| updateMemoryUsedCount(0 - OSSIZEOF(p)); |
| OSFREE(p); |
| } |
| } |
| |
| /* |
| ** A version of sqliteMalloc() that is always a function, not a macro. |
| ** Currently, this is used only to alloc to allocate the parser engine. |
| */ |
| void *sqlite3MallocX(int n){ |
| return sqliteMalloc(n); |
| } |
| |
| /* |
| ** sqlite3Malloc |
| ** sqlite3ReallocOrFree |
| ** |
| ** These two are implemented as wrappers around sqlite3MallocRaw(), |
| ** sqlite3Realloc() and sqlite3Free(). |
| */ |
| void *sqlite3Malloc(int n, int doMemManage){ |
| void *p = sqlite3MallocRaw(n, doMemManage); |
| if( p ){ |
| memset(p, 0, n); |
| } |
| return p; |
| } |
| void sqlite3ReallocOrFree(void **pp, int n){ |
| void *p = sqlite3Realloc(*pp, n); |
| if( !p ){ |
| sqlite3FreeX(*pp); |
| } |
| *pp = p; |
| } |
| |
| /* |
| ** sqlite3ThreadSafeMalloc() and sqlite3ThreadSafeFree() are used in those |
| ** rare scenarios where sqlite may allocate memory in one thread and free |
| ** it in another. They are exactly the same as sqlite3Malloc() and |
| ** sqlite3Free() except that: |
| ** |
| ** * The allocated memory is not included in any calculations with |
| ** respect to the soft-heap-limit, and |
| ** |
| ** * sqlite3ThreadSafeMalloc() must be matched with ThreadSafeFree(), |
| ** not sqlite3Free(). Calling sqlite3Free() on memory obtained from |
| ** ThreadSafeMalloc() will cause an error somewhere down the line. |
| */ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| void *sqlite3ThreadSafeMalloc(int n){ |
| ENTER_MALLOC; |
| return sqlite3Malloc(n, 0); |
| } |
| void sqlite3ThreadSafeFree(void *p){ |
| ENTER_MALLOC; |
| if( p ){ |
| OSFREE(p); |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** Return the number of bytes allocated at location p. p must be either |
| ** a NULL pointer (in which case 0 is returned) or a pointer returned by |
| ** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree(). |
| ** |
| ** The number of bytes allocated does not include any overhead inserted by |
| ** any malloc() wrapper functions that may be called. So the value returned |
| ** is the number of bytes that were available to SQLite using pointer p, |
| ** regardless of how much memory was actually allocated. |
| */ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| int sqlite3AllocSize(void *p){ |
| return OSSIZEOF(p); |
| } |
| #endif |
| |
| /* |
| ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| ** is because when memory debugging is turned on, these two functions are |
| ** called via macros that record the current file and line number in the |
| ** ThreadData structure. |
| */ |
| char *sqlite3StrDup(const char *z){ |
| char *zNew; |
| if( z==0 ) return 0; |
| zNew = sqlite3MallocRaw(strlen(z)+1, 1); |
| if( zNew ) strcpy(zNew, z); |
| return zNew; |
| } |
| char *sqlite3StrNDup(const char *z, int n){ |
| char *zNew; |
| if( z==0 ) return 0; |
| zNew = sqlite3MallocRaw(n+1, 1); |
| if( zNew ){ |
| memcpy(zNew, z, n); |
| zNew[n] = 0; |
| } |
| return zNew; |
| } |
| |
| /* |
| ** Create a string from the 2nd and subsequent arguments (up to the |
| ** first NULL argument), store the string in memory obtained from |
| ** sqliteMalloc() and make the pointer indicated by the 1st argument |
| ** point to that string. The 1st argument must either be NULL or |
| ** point to memory obtained from sqliteMalloc(). |
| */ |
| void sqlite3SetString(char **pz, ...){ |
| va_list ap; |
| int nByte; |
| const char *z; |
| char *zResult; |
| |
| if( pz==0 ) return; |
| nByte = 1; |
| va_start(ap, pz); |
| while( (z = va_arg(ap, const char*))!=0 ){ |
| nByte += strlen(z); |
| } |
| va_end(ap); |
| sqliteFree(*pz); |
| *pz = zResult = sqliteMallocRaw( nByte ); |
| if( zResult==0 ){ |
| return; |
| } |
| *zResult = 0; |
| va_start(ap, pz); |
| while( (z = va_arg(ap, const char*))!=0 ){ |
| strcpy(zResult, z); |
| zResult += strlen(zResult); |
| } |
| va_end(ap); |
| } |
| |
| /* |
| ** Set the most recent error code and error string for the sqlite |
| ** handle "db". The error code is set to "err_code". |
| ** |
| ** If it is not NULL, string zFormat specifies the format of the |
| ** error string in the style of the printf functions: The following |
| ** format characters are allowed: |
| ** |
| ** %s Insert a string |
| ** %z A string that should be freed after use |
| ** %d Insert an integer |
| ** %T Insert a token |
| ** %S Insert the first element of a SrcList |
| ** |
| ** zFormat and any string tokens that follow it are assumed to be |
| ** encoded in UTF-8. |
| ** |
| ** To clear the most recent error for sqlite handle "db", sqlite3Error |
| ** should be called with err_code set to SQLITE_OK and zFormat set |
| ** to NULL. |
| */ |
| void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
| if( db && (db->pErr || (db->pErr = sqlite3ValueNew())!=0) ){ |
| db->errCode = err_code; |
| if( zFormat ){ |
| char *z; |
| va_list ap; |
| va_start(ap, zFormat); |
| z = sqlite3VMPrintf(zFormat, ap); |
| va_end(ap); |
| sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX); |
| }else{ |
| sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
| } |
| } |
| } |
| |
| /* |
| ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
| ** The following formatting characters are allowed: |
| ** |
| ** %s Insert a string |
| ** %z A string that should be freed after use |
| ** %d Insert an integer |
| ** %T Insert a token |
| ** %S Insert the first element of a SrcList |
| ** |
| ** This function should be used to report any error that occurs whilst |
| ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
| ** last thing the sqlite3_prepare() function does is copy the error |
| ** stored by this function into the database handle using sqlite3Error(). |
| ** Function sqlite3Error() should be used during statement execution |
| ** (sqlite3_step() etc.). |
| */ |
| void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
| va_list ap; |
| pParse->nErr++; |
| sqliteFree(pParse->zErrMsg); |
| va_start(ap, zFormat); |
| pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap); |
| va_end(ap); |
| } |
| |
| /* |
| ** Clear the error message in pParse, if any |
| */ |
| void sqlite3ErrorClear(Parse *pParse){ |
| sqliteFree(pParse->zErrMsg); |
| pParse->zErrMsg = 0; |
| pParse->nErr = 0; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** 2002-Feb-14: This routine is extended to remove MS-Access style |
| ** brackets from around identifers. For example: "[a-b-c]" becomes |
| ** "a-b-c". |
| */ |
| void sqlite3Dequote(char *z){ |
| int quote; |
| int i, j; |
| if( z==0 ) return; |
| quote = z[0]; |
| switch( quote ){ |
| case '\'': break; |
| case '"': break; |
| case '`': break; /* For MySQL compatibility */ |
| case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| default: return; |
| } |
| for(i=1, j=0; z[i]; i++){ |
| if( z[i]==quote ){ |
| if( z[i+1]==quote ){ |
| z[j++] = quote; |
| i++; |
| }else{ |
| z[j++] = 0; |
| break; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| } |
| |
| /* An array to map all upper-case characters into their corresponding |
| ** lower-case character. |
| */ |
| const unsigned char sqlite3UpperToLower[] = { |
| #ifdef SQLITE_ASCII |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
| 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, |
| 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, |
| 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, |
| 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, |
| 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, |
| 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, |
| 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, |
| 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, |
| 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, |
| 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, |
| 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, |
| 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, |
| 252,253,254,255 |
| #endif |
| #ifdef SQLITE_EBCDIC |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ |
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ |
| 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ |
| 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ |
| 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ |
| 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */ |
| 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */ |
| 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ |
| 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */ |
| 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ |
| 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ |
| 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ |
| 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ |
| 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */ |
| 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */ |
| #endif |
| }; |
| #define UpperToLower sqlite3UpperToLower |
| |
| /* |
| ** Some systems have stricmp(). Others have strcasecmp(). Because |
| ** there is no consistency, we will define our own. |
| */ |
| int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
| register unsigned char *a, *b; |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| return UpperToLower[*a] - UpperToLower[*b]; |
| } |
| int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ |
| register unsigned char *a, *b; |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
| } |
| |
| /* |
| ** Return TRUE if z is a pure numeric string. Return FALSE if the |
| ** string contains any character which is not part of a number. If |
| ** the string is numeric and contains the '.' character, set *realnum |
| ** to TRUE (otherwise FALSE). |
| ** |
| ** An empty string is considered non-numeric. |
| */ |
| int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
| int incr = (enc==SQLITE_UTF8?1:2); |
| if( enc==SQLITE_UTF16BE ) z++; |
| if( *z=='-' || *z=='+' ) z += incr; |
| if( !isdigit(*(u8*)z) ){ |
| return 0; |
| } |
| z += incr; |
| if( realnum ) *realnum = 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( *z=='.' ){ |
| z += incr; |
| if( !isdigit(*(u8*)z) ) return 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( realnum ) *realnum = 1; |
| } |
| if( *z=='e' || *z=='E' ){ |
| z += incr; |
| if( *z=='+' || *z=='-' ) z += incr; |
| if( !isdigit(*(u8*)z) ) return 0; |
| while( isdigit(*(u8*)z) ){ z += incr; } |
| if( realnum ) *realnum = 1; |
| } |
| return *z==0; |
| } |
| |
| /* |
| ** The string z[] is an ascii representation of a real number. |
| ** Convert this string to a double. |
| ** |
| ** This routine assumes that z[] really is a valid number. If it |
| ** is not, the result is undefined. |
| ** |
| ** This routine is used instead of the library atof() function because |
| ** the library atof() might want to use "," as the decimal point instead |
| ** of "." depending on how locale is set. But that would cause problems |
| ** for SQL. So this routine always uses "." regardless of locale. |
| */ |
| int sqlite3AtoF(const char *z, double *pResult){ |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| int sign = 1; |
| const char *zBegin = z; |
| LONGDOUBLE_TYPE v1 = 0.0; |
| while( isspace(*z) ) z++; |
| if( *z=='-' ){ |
| sign = -1; |
| z++; |
| }else if( *z=='+' ){ |
| z++; |
| } |
| while( isdigit(*(u8*)z) ){ |
| v1 = v1*10.0 + (*z - '0'); |
| z++; |
| } |
| if( *z=='.' ){ |
| LONGDOUBLE_TYPE divisor = 1.0; |
| z++; |
| while( isdigit(*(u8*)z) ){ |
| v1 = v1*10.0 + (*z - '0'); |
| divisor *= 10.0; |
| z++; |
| } |
| v1 /= divisor; |
| } |
| if( *z=='e' || *z=='E' ){ |
| int esign = 1; |
| int eval = 0; |
| LONGDOUBLE_TYPE scale = 1.0; |
| z++; |
| if( *z=='-' ){ |
| esign = -1; |
| z++; |
| }else if( *z=='+' ){ |
| z++; |
| } |
| while( isdigit(*(u8*)z) ){ |
| eval = eval*10 + *z - '0'; |
| z++; |
| } |
| while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } |
| while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } |
| while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } |
| while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } |
| if( esign<0 ){ |
| v1 /= scale; |
| }else{ |
| v1 *= scale; |
| } |
| } |
| *pResult = sign<0 ? -v1 : v1; |
| return z - zBegin; |
| #else |
| return sqlite3atoi64(z, pResult); |
| #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| } |
| |
| /* |
| ** Return TRUE if zNum is a 64-bit signed integer and write |
| ** the value of the integer into *pNum. If zNum is not an integer |
| ** or is an integer that is too large to be expressed with 64 bits, |
| ** then return false. If n>0 and the integer is string is not |
| ** exactly n bytes long, return false. |
| ** |
| ** When this routine was originally written it dealt with only |
| ** 32-bit numbers. At that time, it was much faster than the |
| ** atoi() library routine in RedHat 7.2. |
| */ |
| int sqlite3atoi64(const char *zNum, i64 *pNum){ |
| i64 v = 0; |
| int neg; |
| int i, c; |
| while( isspace(*zNum) ) zNum++; |
| if( *zNum=='-' ){ |
| neg = 1; |
| zNum++; |
| }else if( *zNum=='+' ){ |
| neg = 0; |
| zNum++; |
| }else{ |
| neg = 0; |
| } |
| for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
| v = v*10 + c - '0'; |
| } |
| *pNum = neg ? -v : v; |
| return c==0 && i>0 && |
| (i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0)); |
| } |
| |
| /* |
| ** The string zNum represents an integer. There might be some other |
| ** information following the integer too, but that part is ignored. |
| ** If the integer that the prefix of zNum represents will fit in a |
| ** 32-bit signed integer, return TRUE. Otherwise return FALSE. |
| ** |
| ** This routine returns FALSE for the string -2147483648 even that |
| ** that number will in fact fit in a 32-bit integer. But positive |
| ** 2147483648 will not fit in 32 bits. So it seems safer to return |
| ** false. |
| */ |
| static int sqlite3FitsIn32Bits(const char *zNum){ |
| int i, c; |
| if( *zNum=='-' || *zNum=='+' ) zNum++; |
| for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
| return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0); |
| } |
| |
| /* |
| ** If zNum represents an integer that will fit in 32-bits, then set |
| ** *pValue to that integer and return true. Otherwise return false. |
| */ |
| int sqlite3GetInt32(const char *zNum, int *pValue){ |
| if( sqlite3FitsIn32Bits(zNum) ){ |
| *pValue = atoi(zNum); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** The string zNum represents an integer. There might be some other |
| ** information following the integer too, but that part is ignored. |
| ** If the integer that the prefix of zNum represents will fit in a |
| ** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
| ** |
| ** This routine returns FALSE for the string -9223372036854775808 even that |
| ** that number will, in theory fit in a 64-bit integer. Positive |
| ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return |
| ** false. |
| */ |
| int sqlite3FitsIn64Bits(const char *zNum){ |
| int i, c; |
| if( *zNum=='-' || *zNum=='+' ) zNum++; |
| for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
| return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0); |
| } |
| |
| |
| /* |
| ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
| ** when this routine is called. |
| ** |
| ** This routine is a attempt to detect if two threads use the |
| ** same sqlite* pointer at the same time. There is a race |
| ** condition so it is possible that the error is not detected. |
| ** But usually the problem will be seen. The result will be an |
| ** error which can be used to debug the application that is |
| ** using SQLite incorrectly. |
| ** |
| ** Ticket #202: If db->magic is not a valid open value, take care not |
| ** to modify the db structure at all. It could be that db is a stale |
| ** pointer. In other words, it could be that there has been a prior |
| ** call to sqlite3_close(db) and db has been deallocated. And we do |
| ** not want to write into deallocated memory. |
| */ |
| int sqlite3SafetyOn(sqlite3 *db){ |
| if( db->magic==SQLITE_MAGIC_OPEN ){ |
| db->magic = SQLITE_MAGIC_BUSY; |
| return 0; |
| }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
| db->magic = SQLITE_MAGIC_ERROR; |
| db->flags |= SQLITE_Interrupt; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
| ** when this routine is called. |
| */ |
| int sqlite3SafetyOff(sqlite3 *db){ |
| if( db->magic==SQLITE_MAGIC_BUSY ){ |
| db->magic = SQLITE_MAGIC_OPEN; |
| return 0; |
| }else if( db->magic==SQLITE_MAGIC_OPEN ){ |
| db->magic = SQLITE_MAGIC_ERROR; |
| db->flags |= SQLITE_Interrupt; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Check to make sure we have a valid db pointer. This test is not |
| ** foolproof but it does provide some measure of protection against |
| ** misuse of the interface such as passing in db pointers that are |
| ** NULL or which have been previously closed. If this routine returns |
| ** TRUE it means that the db pointer is invalid and should not be |
| ** dereferenced for any reason. The calling function should invoke |
| ** SQLITE_MISUSE immediately. |
| */ |
| int sqlite3SafetyCheck(sqlite3 *db){ |
| int magic; |
| if( db==0 ) return 1; |
| magic = db->magic; |
| if( magic!=SQLITE_MAGIC_CLOSED && |
| magic!=SQLITE_MAGIC_OPEN && |
| magic!=SQLITE_MAGIC_BUSY ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** The variable-length integer encoding is as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** C = xxxxxxxx 8 bits of data |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** 28 bits - BBBA |
| ** 35 bits - BBBBA |
| ** 42 bits - BBBBBA |
| ** 49 bits - BBBBBBA |
| ** 56 bits - BBBBBBBA |
| ** 64 bits - BBBBBBBBC |
| */ |
| |
| /* |
| ** Write a 64-bit variable-length integer to memory starting at p[0]. |
| ** The length of data write will be between 1 and 9 bytes. The number |
| ** of bytes written is returned. |
| ** |
| ** A variable-length integer consists of the lower 7 bits of each byte |
| ** for all bytes that have the 8th bit set and one byte with the 8th |
| ** bit clear. Except, if we get to the 9th byte, it stores the full |
| ** 8 bits and is the last byte. |
| */ |
| int sqlite3PutVarint(unsigned char *p, u64 v){ |
| int i, j, n; |
| u8 buf[10]; |
| if( v & (((u64)0xff000000)<<32) ){ |
| p[8] = v; |
| v >>= 8; |
| for(i=7; i>=0; i--){ |
| p[i] = (v & 0x7f) | 0x80; |
| v >>= 7; |
| } |
| return 9; |
| } |
| n = 0; |
| do{ |
| buf[n++] = (v & 0x7f) | 0x80; |
| v >>= 7; |
| }while( v!=0 ); |
| buf[0] &= 0x7f; |
| assert( n<=9 ); |
| for(i=0, j=n-1; j>=0; j--, i++){ |
| p[i] = buf[j]; |
| } |
| return n; |
| } |
| |
| /* |
| ** Read a 64-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| */ |
| int sqlite3GetVarint(const unsigned char *p, u64 *v){ |
| u32 x; |
| u64 x64; |
| int n; |
| unsigned char c; |
| if( ((c = p[0]) & 0x80)==0 ){ |
| *v = c; |
| return 1; |
| } |
| x = c & 0x7f; |
| if( ((c = p[1]) & 0x80)==0 ){ |
| *v = (x<<7) | c; |
| return 2; |
| } |
| x = (x<<7) | (c&0x7f); |
| if( ((c = p[2]) & 0x80)==0 ){ |
| *v = (x<<7) | c; |
| return 3; |
| } |
| x = (x<<7) | (c&0x7f); |
| if( ((c = p[3]) & 0x80)==0 ){ |
| *v = (x<<7) | c; |
| return 4; |
| } |
| x64 = (x<<7) | (c&0x7f); |
| n = 4; |
| do{ |
| c = p[n++]; |
| if( n==9 ){ |
| x64 = (x64<<8) | c; |
| break; |
| } |
| x64 = (x64<<7) | (c&0x7f); |
| }while( (c & 0x80)!=0 ); |
| *v = x64; |
| return n; |
| } |
| |
| /* |
| ** Read a 32-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| */ |
| int sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
| u32 x; |
| int n; |
| unsigned char c; |
| if( ((signed char*)p)[0]>=0 ){ |
| *v = p[0]; |
| return 1; |
| } |
| x = p[0] & 0x7f; |
| if( ((signed char*)p)[1]>=0 ){ |
| *v = (x<<7) | p[1]; |
| return 2; |
| } |
| x = (x<<7) | (p[1] & 0x7f); |
| n = 2; |
| do{ |
| x = (x<<7) | ((c = p[n++])&0x7f); |
| }while( (c & 0x80)!=0 && n<9 ); |
| *v = x; |
| return n; |
| } |
| |
| /* |
| ** Return the number of bytes that will be needed to store the given |
| ** 64-bit integer. |
| */ |
| int sqlite3VarintLen(u64 v){ |
| int i = 0; |
| do{ |
| i++; |
| v >>= 7; |
| }while( v!=0 && i<9 ); |
| return i; |
| } |
| |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \ |
| || defined(SQLITE_TEST) |
| /* |
| ** Translate a single byte of Hex into an integer. |
| */ |
| static int hexToInt(int h){ |
| if( h>='0' && h<='9' ){ |
| return h - '0'; |
| }else if( h>='a' && h<='f' ){ |
| return h - 'a' + 10; |
| }else{ |
| assert( h>='A' && h<='F' ); |
| return h - 'A' + 10; |
| } |
| } |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */ |
| |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
| /* |
| ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
| ** value. Return a pointer to its binary value. Space to hold the |
| ** binary value has been obtained from malloc and must be freed by |
| ** the calling routine. |
| */ |
| void *sqlite3HexToBlob(const char *z){ |
| char *zBlob; |
| int i; |
| int n = strlen(z); |
| if( n%2 ) return 0; |
| |
| zBlob = (char *)sqliteMalloc(n/2); |
| for(i=0; i<n; i+=2){ |
| zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
| } |
| return zBlob; |
| } |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
| |
| #if defined(SQLITE_TEST) |
| /* |
| ** Convert text generated by the "%p" conversion format back into |
| ** a pointer. |
| */ |
| void *sqlite3TextToPtr(const char *z){ |
| void *p; |
| u64 v; |
| u32 v2; |
| if( z[0]=='0' && z[1]=='x' ){ |
| z += 2; |
| } |
| v = 0; |
| while( *z ){ |
| v = (v<<4) + hexToInt(*z); |
| z++; |
| } |
| if( sizeof(p)==sizeof(v) ){ |
| p = *(void**)&v; |
| }else{ |
| assert( sizeof(p)==sizeof(v2) ); |
| v2 = (u32)v; |
| p = *(void**)&v2; |
| } |
| return p; |
| } |
| #endif |
| |
| /* |
| ** Return a pointer to the ThreadData associated with the calling thread. |
| */ |
| ThreadData *sqlite3ThreadData(){ |
| ThreadData *p = (ThreadData*)sqlite3OsThreadSpecificData(1); |
| if( !p ){ |
| sqlite3FailedMalloc(); |
| } |
| return p; |
| } |
| |
| /* |
| ** Return a pointer to the ThreadData associated with the calling thread. |
| ** If no ThreadData has been allocated to this thread yet, return a pointer |
| ** to a substitute ThreadData structure that is all zeros. |
| */ |
| const ThreadData *sqlite3ThreadDataReadOnly(){ |
| static const ThreadData zeroData = {0}; /* Initializer to silence warnings |
| ** from broken compilers */ |
| const ThreadData *pTd = sqlite3OsThreadSpecificData(0); |
| return pTd ? pTd : &zeroData; |
| } |
| |
| /* |
| ** Check to see if the ThreadData for this thread is all zero. If it |
| ** is, then deallocate it. |
| */ |
| void sqlite3ReleaseThreadData(){ |
| sqlite3OsThreadSpecificData(-1); |
| } |
| |
| /* |
| ** This function must be called before exiting any API function (i.e. |
| ** returning control to the user) that has called sqlite3Malloc or |
| ** sqlite3Realloc. |
| ** |
| ** The returned value is normally a copy of the second argument to this |
| ** function. However, if a malloc() failure has occured since the previous |
| ** invocation SQLITE_NOMEM is returned instead. |
| ** |
| ** If the first argument, db, is not NULL and a malloc() error has occured, |
| ** then the connection error-code (the value returned by sqlite3_errcode()) |
| ** is set to SQLITE_NOMEM. |
| */ |
| static int mallocHasFailed = 0; |
| int sqlite3ApiExit(sqlite3* db, int rc){ |
| if( sqlite3MallocFailed() ){ |
| mallocHasFailed = 0; |
| sqlite3OsLeaveMutex(); |
| sqlite3Error(db, SQLITE_NOMEM, 0); |
| rc = SQLITE_NOMEM; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return true is a malloc has failed in this thread since the last call |
| ** to sqlite3ApiExit(), or false otherwise. |
| */ |
| int sqlite3MallocFailed(){ |
| return (mallocHasFailed && sqlite3OsInMutex(1)); |
| } |
| |
| /* |
| ** Set the "malloc has failed" condition to true for this thread. |
| */ |
| void sqlite3FailedMalloc(){ |
| sqlite3OsEnterMutex(); |
| assert( mallocHasFailed==0 ); |
| mallocHasFailed = 1; |
| } |
| |
| #ifdef SQLITE_MEMDEBUG |
| /* |
| ** This function sets a flag in the thread-specific-data structure that will |
| ** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called. |
| */ |
| void sqlite3MallocDisallow(){ |
| assert( sqlite3_mallocDisallowed>=0 ); |
| sqlite3_mallocDisallowed++; |
| } |
| |
| /* |
| ** This function clears the flag set in the thread-specific-data structure set |
| ** by sqlite3MallocDisallow(). |
| */ |
| void sqlite3MallocAllow(){ |
| assert( sqlite3_mallocDisallowed>0 ); |
| sqlite3_mallocDisallowed--; |
| } |
| #endif |