| /* |
| ** 2004 April 13 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used to translate between UTF-8, |
| ** UTF-16, UTF-16BE, and UTF-16LE. |
| ** |
| ** $Id: utf.c,v 1.39 2006/04/16 12:05:03 drh Exp $ |
| ** |
| ** Notes on UTF-8: |
| ** |
| ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
| ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
| ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
| ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
| ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| ** |
| ** |
| ** Notes on UTF-16: (with wwww+1==uuuuu) |
| ** |
| ** Word-0 Word-1 Value |
| ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
| ** |
| ** |
| ** BOM or Byte Order Mark: |
| ** 0xff 0xfe little-endian utf-16 follows |
| ** 0xfe 0xff big-endian utf-16 follows |
| ** |
| ** |
| ** Handling of malformed strings: |
| ** |
| ** SQLite accepts and processes malformed strings without an error wherever |
| ** possible. However this is not possible when converting between UTF-8 and |
| ** UTF-16. |
| ** |
| ** When converting malformed UTF-8 strings to UTF-16, one instance of the |
| ** replacement character U+FFFD for each byte that cannot be interpeted as |
| ** part of a valid unicode character. |
| ** |
| ** When converting malformed UTF-16 strings to UTF-8, one instance of the |
| ** replacement character U+FFFD for each pair of bytes that cannot be |
| ** interpeted as part of a valid unicode character. |
| ** |
| ** This file contains the following public routines: |
| ** |
| ** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string. |
| ** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings. |
| ** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string. |
| ** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string. |
| ** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings. |
| ** |
| */ |
| #include "sqliteInt.h" |
| #include <assert.h> |
| #include "vdbeInt.h" |
| |
| /* |
| ** This table maps from the first byte of a UTF-8 character to the number |
| ** of trailing bytes expected. A value '255' indicates that the table key |
| ** is not a legal first byte for a UTF-8 character. |
| */ |
| static const u8 xtra_utf8_bytes[256] = { |
| /* 0xxxxxxx */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| |
| /* 10wwwwww */ |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| |
| /* 110yyyyy */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| |
| /* 1110zzzz */ |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| |
| /* 11110yyy */ |
| 3, 3, 3, 3, 3, 3, 3, 3, 255, 255, 255, 255, 255, 255, 255, 255, |
| }; |
| |
| /* |
| ** This table maps from the number of trailing bytes in a UTF-8 character |
| ** to an integer constant that is effectively calculated for each character |
| ** read by a naive implementation of a UTF-8 character reader. The code |
| ** in the READ_UTF8 macro explains things best. |
| */ |
| static const int xtra_utf8_bits[4] = { |
| 0, |
| 12416, /* (0xC0 << 6) + (0x80) */ |
| 925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */ |
| 63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */ |
| }; |
| |
| #define READ_UTF8(zIn, c) { \ |
| int xtra; \ |
| c = *(zIn)++; \ |
| xtra = xtra_utf8_bytes[c]; \ |
| switch( xtra ){ \ |
| case 255: c = (int)0xFFFD; break; \ |
| case 3: c = (c<<6) + *(zIn)++; \ |
| case 2: c = (c<<6) + *(zIn)++; \ |
| case 1: c = (c<<6) + *(zIn)++; \ |
| c -= xtra_utf8_bits[xtra]; \ |
| } \ |
| } |
| int sqlite3ReadUtf8(const unsigned char *z){ |
| int c; |
| READ_UTF8(z, c); |
| return c; |
| } |
| |
| #define SKIP_UTF8(zIn) { \ |
| zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \ |
| } |
| |
| #define WRITE_UTF8(zOut, c) { \ |
| if( c<0x00080 ){ \ |
| *zOut++ = (c&0xFF); \ |
| } \ |
| else if( c<0x00800 ){ \ |
| *zOut++ = 0xC0 + ((c>>6)&0x1F); \ |
| *zOut++ = 0x80 + (c & 0x3F); \ |
| } \ |
| else if( c<0x10000 ){ \ |
| *zOut++ = 0xE0 + ((c>>12)&0x0F); \ |
| *zOut++ = 0x80 + ((c>>6) & 0x3F); \ |
| *zOut++ = 0x80 + (c & 0x3F); \ |
| }else{ \ |
| *zOut++ = 0xF0 + ((c>>18) & 0x07); \ |
| *zOut++ = 0x80 + ((c>>12) & 0x3F); \ |
| *zOut++ = 0x80 + ((c>>6) & 0x3F); \ |
| *zOut++ = 0x80 + (c & 0x3F); \ |
| } \ |
| } |
| |
| #define WRITE_UTF16LE(zOut, c) { \ |
| if( c<=0xFFFF ){ \ |
| *zOut++ = (c&0x00FF); \ |
| *zOut++ = ((c>>8)&0x00FF); \ |
| }else{ \ |
| *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
| *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
| *zOut++ = (c&0x00FF); \ |
| *zOut++ = (0x00DC + ((c>>8)&0x03)); \ |
| } \ |
| } |
| |
| #define WRITE_UTF16BE(zOut, c) { \ |
| if( c<=0xFFFF ){ \ |
| *zOut++ = ((c>>8)&0x00FF); \ |
| *zOut++ = (c&0x00FF); \ |
| }else{ \ |
| *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
| *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
| *zOut++ = (0x00DC + ((c>>8)&0x03)); \ |
| *zOut++ = (c&0x00FF); \ |
| } \ |
| } |
| |
| #define READ_UTF16LE(zIn, c){ \ |
| c = (*zIn++); \ |
| c += ((*zIn++)<<8); \ |
| if( c>=0xD800 && c<=0xE000 ){ \ |
| int c2 = (*zIn++); \ |
| c2 += ((*zIn++)<<8); \ |
| c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
| } \ |
| } |
| |
| #define READ_UTF16BE(zIn, c){ \ |
| c = ((*zIn++)<<8); \ |
| c += (*zIn++); \ |
| if( c>=0xD800 && c<=0xE000 ){ \ |
| int c2 = ((*zIn++)<<8); \ |
| c2 += (*zIn++); \ |
| c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
| } \ |
| } |
| |
| #define SKIP_UTF16BE(zIn){ \ |
| if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ |
| zIn += 4; \ |
| }else{ \ |
| zIn += 2; \ |
| } \ |
| } |
| #define SKIP_UTF16LE(zIn){ \ |
| zIn++; \ |
| if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ |
| zIn += 3; \ |
| }else{ \ |
| zIn += 1; \ |
| } \ |
| } |
| |
| #define RSKIP_UTF16LE(zIn){ \ |
| if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ |
| zIn -= 4; \ |
| }else{ \ |
| zIn -= 2; \ |
| } \ |
| } |
| #define RSKIP_UTF16BE(zIn){ \ |
| zIn--; \ |
| if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ |
| zIn -= 3; \ |
| }else{ \ |
| zIn -= 1; \ |
| } \ |
| } |
| |
| /* |
| ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is |
| ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). |
| */ |
| /* #define TRANSLATE_TRACE 1 */ |
| |
| #ifndef SQLITE_OMIT_UTF16 |
| /* |
| ** This routine transforms the internal text encoding used by pMem to |
| ** desiredEnc. It is an error if the string is already of the desired |
| ** encoding, or if *pMem does not contain a string value. |
| */ |
| int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ |
| unsigned char zShort[NBFS]; /* Temporary short output buffer */ |
| int len; /* Maximum length of output string in bytes */ |
| unsigned char *zOut; /* Output buffer */ |
| unsigned char *zIn; /* Input iterator */ |
| unsigned char *zTerm; /* End of input */ |
| unsigned char *z; /* Output iterator */ |
| int c; |
| |
| assert( pMem->flags&MEM_Str ); |
| assert( pMem->enc!=desiredEnc ); |
| assert( pMem->enc!=0 ); |
| assert( pMem->n>=0 ); |
| |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
| { |
| char zBuf[100]; |
| sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
| fprintf(stderr, "INPUT: %s\n", zBuf); |
| } |
| #endif |
| |
| /* If the translation is between UTF-16 little and big endian, then |
| ** all that is required is to swap the byte order. This case is handled |
| ** differently from the others. |
| */ |
| if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ |
| u8 temp; |
| int rc; |
| rc = sqlite3VdbeMemMakeWriteable(pMem); |
| if( rc!=SQLITE_OK ){ |
| assert( rc==SQLITE_NOMEM ); |
| return SQLITE_NOMEM; |
| } |
| zIn = (u8*)pMem->z; |
| zTerm = &zIn[pMem->n]; |
| while( zIn<zTerm ){ |
| temp = *zIn; |
| *zIn = *(zIn+1); |
| zIn++; |
| *zIn++ = temp; |
| } |
| pMem->enc = desiredEnc; |
| goto translate_out; |
| } |
| |
| /* Set len to the maximum number of bytes required in the output buffer. */ |
| if( desiredEnc==SQLITE_UTF8 ){ |
| /* When converting from UTF-16, the maximum growth results from |
| ** translating a 2-byte character to a 4-byte UTF-8 character. |
| ** A single byte is required for the output string |
| ** nul-terminator. |
| */ |
| len = pMem->n * 2 + 1; |
| }else{ |
| /* When converting from UTF-8 to UTF-16 the maximum growth is caused |
| ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 |
| ** character. Two bytes are required in the output buffer for the |
| ** nul-terminator. |
| */ |
| len = pMem->n * 2 + 2; |
| } |
| |
| /* Set zIn to point at the start of the input buffer and zTerm to point 1 |
| ** byte past the end. |
| ** |
| ** Variable zOut is set to point at the output buffer. This may be space |
| ** obtained from malloc(), or Mem.zShort, if it large enough and not in |
| ** use, or the zShort array on the stack (see above). |
| */ |
| zIn = (u8*)pMem->z; |
| zTerm = &zIn[pMem->n]; |
| if( len>NBFS ){ |
| zOut = sqliteMallocRaw(len); |
| if( !zOut ) return SQLITE_NOMEM; |
| }else{ |
| zOut = zShort; |
| } |
| z = zOut; |
| |
| if( pMem->enc==SQLITE_UTF8 ){ |
| if( desiredEnc==SQLITE_UTF16LE ){ |
| /* UTF-8 -> UTF-16 Little-endian */ |
| while( zIn<zTerm ){ |
| READ_UTF8(zIn, c); |
| WRITE_UTF16LE(z, c); |
| } |
| }else{ |
| assert( desiredEnc==SQLITE_UTF16BE ); |
| /* UTF-8 -> UTF-16 Big-endian */ |
| while( zIn<zTerm ){ |
| READ_UTF8(zIn, c); |
| WRITE_UTF16BE(z, c); |
| } |
| } |
| pMem->n = z - zOut; |
| *z++ = 0; |
| }else{ |
| assert( desiredEnc==SQLITE_UTF8 ); |
| if( pMem->enc==SQLITE_UTF16LE ){ |
| /* UTF-16 Little-endian -> UTF-8 */ |
| while( zIn<zTerm ){ |
| READ_UTF16LE(zIn, c); |
| WRITE_UTF8(z, c); |
| } |
| }else{ |
| /* UTF-16 Little-endian -> UTF-8 */ |
| while( zIn<zTerm ){ |
| READ_UTF16BE(zIn, c); |
| WRITE_UTF8(z, c); |
| } |
| } |
| pMem->n = z - zOut; |
| } |
| *z = 0; |
| assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); |
| |
| sqlite3VdbeMemRelease(pMem); |
| pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
| pMem->enc = desiredEnc; |
| if( zOut==zShort ){ |
| memcpy(pMem->zShort, zOut, len); |
| zOut = (u8*)pMem->zShort; |
| pMem->flags |= (MEM_Term|MEM_Short); |
| }else{ |
| pMem->flags |= (MEM_Term|MEM_Dyn); |
| } |
| pMem->z = (char*)zOut; |
| |
| translate_out: |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
| { |
| char zBuf[100]; |
| sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
| fprintf(stderr, "OUTPUT: %s\n", zBuf); |
| } |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This routine checks for a byte-order mark at the beginning of the |
| ** UTF-16 string stored in *pMem. If one is present, it is removed and |
| ** the encoding of the Mem adjusted. This routine does not do any |
| ** byte-swapping, it just sets Mem.enc appropriately. |
| ** |
| ** The allocation (static, dynamic etc.) and encoding of the Mem may be |
| ** changed by this function. |
| */ |
| int sqlite3VdbeMemHandleBom(Mem *pMem){ |
| int rc = SQLITE_OK; |
| u8 bom = 0; |
| |
| if( pMem->n<0 || pMem->n>1 ){ |
| u8 b1 = *(u8 *)pMem->z; |
| u8 b2 = *(((u8 *)pMem->z) + 1); |
| if( b1==0xFE && b2==0xFF ){ |
| bom = SQLITE_UTF16BE; |
| } |
| if( b1==0xFF && b2==0xFE ){ |
| bom = SQLITE_UTF16LE; |
| } |
| } |
| |
| if( bom ){ |
| /* This function is called as soon as a string is stored in a Mem*, |
| ** from within sqlite3VdbeMemSetStr(). At that point it is not possible |
| ** for the string to be stored in Mem.zShort, or for it to be stored |
| ** in dynamic memory with no destructor. |
| */ |
| assert( !(pMem->flags&MEM_Short) ); |
| assert( !(pMem->flags&MEM_Dyn) || pMem->xDel ); |
| if( pMem->flags & MEM_Dyn ){ |
| void (*xDel)(void*) = pMem->xDel; |
| char *z = pMem->z; |
| pMem->z = 0; |
| pMem->xDel = 0; |
| rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT); |
| xDel(z); |
| }else{ |
| rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, |
| SQLITE_TRANSIENT); |
| } |
| } |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_UTF16 */ |
| |
| /* |
| ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
| ** return the number of unicode characters in pZ up to (but not including) |
| ** the first 0x00 byte. If nByte is not less than zero, return the |
| ** number of unicode characters in the first nByte of pZ (or up to |
| ** the first 0x00, whichever comes first). |
| */ |
| int sqlite3utf8CharLen(const char *z, int nByte){ |
| int r = 0; |
| const char *zTerm; |
| if( nByte>=0 ){ |
| zTerm = &z[nByte]; |
| }else{ |
| zTerm = (const char *)(-1); |
| } |
| assert( z<=zTerm ); |
| while( *z!=0 && z<zTerm ){ |
| SKIP_UTF8(z); |
| r++; |
| } |
| return r; |
| } |
| |
| #ifndef SQLITE_OMIT_UTF16 |
| /* |
| ** Convert a UTF-16 string in the native encoding into a UTF-8 string. |
| ** Memory to hold the UTF-8 string is obtained from malloc and must be |
| ** freed by the calling function. |
| ** |
| ** NULL is returned if there is an allocation error. |
| */ |
| char *sqlite3utf16to8(const void *z, int nByte){ |
| Mem m; |
| memset(&m, 0, sizeof(m)); |
| sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC); |
| sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); |
| assert( m.flags & MEM_Term ); |
| assert( m.flags & MEM_Str ); |
| return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z); |
| } |
| |
| /* |
| ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, |
| ** return the number of bytes up to (but not including), the first pair |
| ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, |
| ** then return the number of bytes in the first nChar unicode characters |
| ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). |
| */ |
| int sqlite3utf16ByteLen(const void *zIn, int nChar){ |
| int c = 1; |
| char const *z = zIn; |
| int n = 0; |
| if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ |
| /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here |
| ** and in other parts of this file means that at one branch will |
| ** not be covered by coverage testing on any single host. But coverage |
| ** will be complete if the tests are run on both a little-endian and |
| ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE |
| ** macros are constant at compile time the compiler can determine |
| ** which branch will be followed. It is therefore assumed that no runtime |
| ** penalty is paid for this "if" statement. |
| */ |
| while( c && ((nChar<0) || n<nChar) ){ |
| READ_UTF16BE(z, c); |
| n++; |
| } |
| }else{ |
| while( c && ((nChar<0) || n<nChar) ){ |
| READ_UTF16LE(z, c); |
| n++; |
| } |
| } |
| return (z-(char const *)zIn)-((c==0)?2:0); |
| } |
| |
| /* |
| ** UTF-16 implementation of the substr() |
| */ |
| void sqlite3utf16Substr( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| int y, z; |
| unsigned char const *zStr; |
| unsigned char const *zStrEnd; |
| unsigned char const *zStart; |
| unsigned char const *zEnd; |
| int i; |
| |
| zStr = (unsigned char const *)sqlite3_value_text16(argv[0]); |
| zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])]; |
| y = sqlite3_value_int(argv[1]); |
| z = sqlite3_value_int(argv[2]); |
| |
| if( y>0 ){ |
| y = y-1; |
| zStart = zStr; |
| if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
| for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart); |
| }else{ |
| for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart); |
| } |
| }else{ |
| zStart = zStrEnd; |
| if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
| for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart); |
| }else{ |
| for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart); |
| } |
| for(; i<0; i++) z -= 1; |
| } |
| |
| zEnd = zStart; |
| if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
| for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd); |
| }else{ |
| for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd); |
| } |
| |
| sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT); |
| } |
| |
| #if defined(SQLITE_TEST) |
| /* |
| ** This routine is called from the TCL test function "translate_selftest". |
| ** It checks that the primitives for serializing and deserializing |
| ** characters in each encoding are inverses of each other. |
| */ |
| void sqlite3utfSelfTest(){ |
| int i; |
| unsigned char zBuf[20]; |
| unsigned char *z; |
| int n; |
| int c; |
| |
| for(i=0; i<0x00110000; i++){ |
| z = zBuf; |
| WRITE_UTF8(z, i); |
| n = z-zBuf; |
| z = zBuf; |
| READ_UTF8(z, c); |
| assert( c==i ); |
| assert( (z-zBuf)==n ); |
| } |
| for(i=0; i<0x00110000; i++){ |
| if( i>=0xD800 && i<=0xE000 ) continue; |
| z = zBuf; |
| WRITE_UTF16LE(z, i); |
| n = z-zBuf; |
| z = zBuf; |
| READ_UTF16LE(z, c); |
| assert( c==i ); |
| assert( (z-zBuf)==n ); |
| } |
| for(i=0; i<0x00110000; i++){ |
| if( i>=0xD800 && i<=0xE000 ) continue; |
| z = zBuf; |
| WRITE_UTF16BE(z, i); |
| n = z-zBuf; |
| z = zBuf; |
| READ_UTF16BE(z, c); |
| assert( c==i ); |
| assert( (z-zBuf)==n ); |
| } |
| } |
| #endif /* SQLITE_TEST */ |
| #endif /* SQLITE_OMIT_UTF16 */ |