| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains C code routines that are called by the parser |
| ** to handle SELECT statements in SQLite. |
| ** |
| ** $Id: select.c,v 1.313 2006/04/26 17:39:34 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| |
| |
| /* |
| ** Delete all the content of a Select structure but do not deallocate |
| ** the select structure itself. |
| */ |
| static void clearSelect(Select *p){ |
| sqlite3ExprListDelete(p->pEList); |
| sqlite3SrcListDelete(p->pSrc); |
| sqlite3ExprDelete(p->pWhere); |
| sqlite3ExprListDelete(p->pGroupBy); |
| sqlite3ExprDelete(p->pHaving); |
| sqlite3ExprListDelete(p->pOrderBy); |
| sqlite3SelectDelete(p->pPrior); |
| sqlite3ExprDelete(p->pLimit); |
| sqlite3ExprDelete(p->pOffset); |
| } |
| |
| |
| /* |
| ** Allocate a new Select structure and return a pointer to that |
| ** structure. |
| */ |
| Select *sqlite3SelectNew( |
| ExprList *pEList, /* which columns to include in the result */ |
| SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
| Expr *pWhere, /* the WHERE clause */ |
| ExprList *pGroupBy, /* the GROUP BY clause */ |
| Expr *pHaving, /* the HAVING clause */ |
| ExprList *pOrderBy, /* the ORDER BY clause */ |
| int isDistinct, /* true if the DISTINCT keyword is present */ |
| Expr *pLimit, /* LIMIT value. NULL means not used */ |
| Expr *pOffset /* OFFSET value. NULL means no offset */ |
| ){ |
| Select *pNew; |
| Select standin; |
| pNew = sqliteMalloc( sizeof(*pNew) ); |
| assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ |
| if( pNew==0 ){ |
| pNew = &standin; |
| memset(pNew, 0, sizeof(*pNew)); |
| } |
| if( pEList==0 ){ |
| pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); |
| } |
| pNew->pEList = pEList; |
| pNew->pSrc = pSrc; |
| pNew->pWhere = pWhere; |
| pNew->pGroupBy = pGroupBy; |
| pNew->pHaving = pHaving; |
| pNew->pOrderBy = pOrderBy; |
| pNew->isDistinct = isDistinct; |
| pNew->op = TK_SELECT; |
| pNew->pLimit = pLimit; |
| pNew->pOffset = pOffset; |
| pNew->iLimit = -1; |
| pNew->iOffset = -1; |
| pNew->addrOpenVirt[0] = -1; |
| pNew->addrOpenVirt[1] = -1; |
| pNew->addrOpenVirt[2] = -1; |
| if( pNew==&standin) { |
| clearSelect(pNew); |
| pNew = 0; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Delete the given Select structure and all of its substructures. |
| */ |
| void sqlite3SelectDelete(Select *p){ |
| if( p ){ |
| clearSelect(p); |
| sqliteFree(p); |
| } |
| } |
| |
| /* |
| ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the |
| ** type of join. Return an integer constant that expresses that type |
| ** in terms of the following bit values: |
| ** |
| ** JT_INNER |
| ** JT_CROSS |
| ** JT_OUTER |
| ** JT_NATURAL |
| ** JT_LEFT |
| ** JT_RIGHT |
| ** |
| ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
| ** |
| ** If an illegal or unsupported join type is seen, then still return |
| ** a join type, but put an error in the pParse structure. |
| */ |
| int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
| int jointype = 0; |
| Token *apAll[3]; |
| Token *p; |
| static const struct { |
| const char zKeyword[8]; |
| u8 nChar; |
| u8 code; |
| } keywords[] = { |
| { "natural", 7, JT_NATURAL }, |
| { "left", 4, JT_LEFT|JT_OUTER }, |
| { "right", 5, JT_RIGHT|JT_OUTER }, |
| { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
| { "outer", 5, JT_OUTER }, |
| { "inner", 5, JT_INNER }, |
| { "cross", 5, JT_INNER|JT_CROSS }, |
| }; |
| int i, j; |
| apAll[0] = pA; |
| apAll[1] = pB; |
| apAll[2] = pC; |
| for(i=0; i<3 && apAll[i]; i++){ |
| p = apAll[i]; |
| for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ |
| if( p->n==keywords[j].nChar |
| && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ |
| jointype |= keywords[j].code; |
| break; |
| } |
| } |
| if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ |
| jointype |= JT_ERROR; |
| break; |
| } |
| } |
| if( |
| (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
| (jointype & JT_ERROR)!=0 |
| ){ |
| const char *zSp1 = " "; |
| const char *zSp2 = " "; |
| if( pB==0 ){ zSp1++; } |
| if( pC==0 ){ zSp2++; } |
| sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
| "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); |
| jointype = JT_INNER; |
| }else if( jointype & JT_RIGHT ){ |
| sqlite3ErrorMsg(pParse, |
| "RIGHT and FULL OUTER JOINs are not currently supported"); |
| jointype = JT_INNER; |
| } |
| return jointype; |
| } |
| |
| /* |
| ** Return the index of a column in a table. Return -1 if the column |
| ** is not contained in the table. |
| */ |
| static int columnIndex(Table *pTab, const char *zCol){ |
| int i; |
| for(i=0; i<pTab->nCol; i++){ |
| if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
| } |
| return -1; |
| } |
| |
| /* |
| ** Set the value of a token to a '\000'-terminated string. |
| */ |
| static void setToken(Token *p, const char *z){ |
| p->z = (u8*)z; |
| p->n = z ? strlen(z) : 0; |
| p->dyn = 0; |
| } |
| |
| /* |
| ** Create an expression node for an identifier with the name of zName |
| */ |
| static Expr *createIdExpr(const char *zName){ |
| Token dummy; |
| setToken(&dummy, zName); |
| return sqlite3Expr(TK_ID, 0, 0, &dummy); |
| } |
| |
| |
| /* |
| ** Add a term to the WHERE expression in *ppExpr that requires the |
| ** zCol column to be equal in the two tables pTab1 and pTab2. |
| */ |
| static void addWhereTerm( |
| const char *zCol, /* Name of the column */ |
| const Table *pTab1, /* First table */ |
| const char *zAlias1, /* Alias for first table. May be NULL */ |
| const Table *pTab2, /* Second table */ |
| const char *zAlias2, /* Alias for second table. May be NULL */ |
| int iRightJoinTable, /* VDBE cursor for the right table */ |
| Expr **ppExpr /* Add the equality term to this expression */ |
| ){ |
| Expr *pE1a, *pE1b, *pE1c; |
| Expr *pE2a, *pE2b, *pE2c; |
| Expr *pE; |
| |
| pE1a = createIdExpr(zCol); |
| pE2a = createIdExpr(zCol); |
| if( zAlias1==0 ){ |
| zAlias1 = pTab1->zName; |
| } |
| pE1b = createIdExpr(zAlias1); |
| if( zAlias2==0 ){ |
| zAlias2 = pTab2->zName; |
| } |
| pE2b = createIdExpr(zAlias2); |
| pE1c = sqlite3Expr(TK_DOT, pE1b, pE1a, 0); |
| pE2c = sqlite3Expr(TK_DOT, pE2b, pE2a, 0); |
| pE = sqlite3Expr(TK_EQ, pE1c, pE2c, 0); |
| ExprSetProperty(pE, EP_FromJoin); |
| pE->iRightJoinTable = iRightJoinTable; |
| *ppExpr = sqlite3ExprAnd(*ppExpr, pE); |
| } |
| |
| /* |
| ** Set the EP_FromJoin property on all terms of the given expression. |
| ** And set the Expr.iRightJoinTable to iTable for every term in the |
| ** expression. |
| ** |
| ** The EP_FromJoin property is used on terms of an expression to tell |
| ** the LEFT OUTER JOIN processing logic that this term is part of the |
| ** join restriction specified in the ON or USING clause and not a part |
| ** of the more general WHERE clause. These terms are moved over to the |
| ** WHERE clause during join processing but we need to remember that they |
| ** originated in the ON or USING clause. |
| ** |
| ** The Expr.iRightJoinTable tells the WHERE clause processing that the |
| ** expression depends on table iRightJoinTable even if that table is not |
| ** explicitly mentioned in the expression. That information is needed |
| ** for cases like this: |
| ** |
| ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
| ** |
| ** The where clause needs to defer the handling of the t1.x=5 |
| ** term until after the t2 loop of the join. In that way, a |
| ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
| ** defer the handling of t1.x=5, it will be processed immediately |
| ** after the t1 loop and rows with t1.x!=5 will never appear in |
| ** the output, which is incorrect. |
| */ |
| static void setJoinExpr(Expr *p, int iTable){ |
| while( p ){ |
| ExprSetProperty(p, EP_FromJoin); |
| p->iRightJoinTable = iTable; |
| setJoinExpr(p->pLeft, iTable); |
| p = p->pRight; |
| } |
| } |
| |
| /* |
| ** This routine processes the join information for a SELECT statement. |
| ** ON and USING clauses are converted into extra terms of the WHERE clause. |
| ** NATURAL joins also create extra WHERE clause terms. |
| ** |
| ** The terms of a FROM clause are contained in the Select.pSrc structure. |
| ** The left most table is the first entry in Select.pSrc. The right-most |
| ** table is the last entry. The join operator is held in the entry to |
| ** the left. Thus entry 0 contains the join operator for the join between |
| ** entries 0 and 1. Any ON or USING clauses associated with the join are |
| ** also attached to the left entry. |
| ** |
| ** This routine returns the number of errors encountered. |
| */ |
| static int sqliteProcessJoin(Parse *pParse, Select *p){ |
| SrcList *pSrc; /* All tables in the FROM clause */ |
| int i, j; /* Loop counters */ |
| struct SrcList_item *pLeft; /* Left table being joined */ |
| struct SrcList_item *pRight; /* Right table being joined */ |
| |
| pSrc = p->pSrc; |
| pLeft = &pSrc->a[0]; |
| pRight = &pLeft[1]; |
| for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
| Table *pLeftTab = pLeft->pTab; |
| Table *pRightTab = pRight->pTab; |
| |
| if( pLeftTab==0 || pRightTab==0 ) continue; |
| |
| /* When the NATURAL keyword is present, add WHERE clause terms for |
| ** every column that the two tables have in common. |
| */ |
| if( pLeft->jointype & JT_NATURAL ){ |
| if( pLeft->pOn || pLeft->pUsing ){ |
| sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
| "an ON or USING clause", 0); |
| return 1; |
| } |
| for(j=0; j<pLeftTab->nCol; j++){ |
| char *zName = pLeftTab->aCol[j].zName; |
| if( columnIndex(pRightTab, zName)>=0 ){ |
| addWhereTerm(zName, pLeftTab, pLeft->zAlias, |
| pRightTab, pRight->zAlias, |
| pRight->iCursor, &p->pWhere); |
| |
| } |
| } |
| } |
| |
| /* Disallow both ON and USING clauses in the same join |
| */ |
| if( pLeft->pOn && pLeft->pUsing ){ |
| sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
| "clauses in the same join"); |
| return 1; |
| } |
| |
| /* Add the ON clause to the end of the WHERE clause, connected by |
| ** an AND operator. |
| */ |
| if( pLeft->pOn ){ |
| setJoinExpr(pLeft->pOn, pRight->iCursor); |
| p->pWhere = sqlite3ExprAnd(p->pWhere, pLeft->pOn); |
| pLeft->pOn = 0; |
| } |
| |
| /* Create extra terms on the WHERE clause for each column named |
| ** in the USING clause. Example: If the two tables to be joined are |
| ** A and B and the USING clause names X, Y, and Z, then add this |
| ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
| ** Report an error if any column mentioned in the USING clause is |
| ** not contained in both tables to be joined. |
| */ |
| if( pLeft->pUsing ){ |
| IdList *pList = pLeft->pUsing; |
| for(j=0; j<pList->nId; j++){ |
| char *zName = pList->a[j].zName; |
| if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ |
| sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
| "not present in both tables", zName); |
| return 1; |
| } |
| addWhereTerm(zName, pLeftTab, pLeft->zAlias, |
| pRightTab, pRight->zAlias, |
| pRight->iCursor, &p->pWhere); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Insert code into "v" that will push the record on the top of the |
| ** stack into the sorter. |
| */ |
| static void pushOntoSorter( |
| Parse *pParse, /* Parser context */ |
| ExprList *pOrderBy, /* The ORDER BY clause */ |
| Select *pSelect /* The whole SELECT statement */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| sqlite3ExprCodeExprList(pParse, pOrderBy); |
| sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); |
| sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); |
| if( pSelect->iLimit>=0 ){ |
| int addr1, addr2; |
| addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); |
| sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); |
| addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
| sqlite3VdbeJumpHere(v, addr1); |
| sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); |
| sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); |
| sqlite3VdbeJumpHere(v, addr2); |
| pSelect->iLimit = -1; |
| } |
| } |
| |
| /* |
| ** Add code to implement the OFFSET |
| */ |
| static void codeOffset( |
| Vdbe *v, /* Generate code into this VM */ |
| Select *p, /* The SELECT statement being coded */ |
| int iContinue, /* Jump here to skip the current record */ |
| int nPop /* Number of times to pop stack when jumping */ |
| ){ |
| if( p->iOffset>=0 && iContinue!=0 ){ |
| int addr; |
| sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); |
| addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); |
| if( nPop>0 ){ |
| sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); |
| } |
| sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); |
| VdbeComment((v, "# skip OFFSET records")); |
| sqlite3VdbeJumpHere(v, addr); |
| } |
| } |
| |
| /* |
| ** Add code that will check to make sure the top N elements of the |
| ** stack are distinct. iTab is a sorting index that holds previously |
| ** seen combinations of the N values. A new entry is made in iTab |
| ** if the current N values are new. |
| ** |
| ** A jump to addrRepeat is made and the N+1 values are popped from the |
| ** stack if the top N elements are not distinct. |
| */ |
| static void codeDistinct( |
| Vdbe *v, /* Generate code into this VM */ |
| int iTab, /* A sorting index used to test for distinctness */ |
| int addrRepeat, /* Jump to here if not distinct */ |
| int N /* The top N elements of the stack must be distinct */ |
| ){ |
| sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); |
| sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); |
| VdbeComment((v, "# skip indistinct records")); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); |
| } |
| |
| |
| /* |
| ** This routine generates the code for the inside of the inner loop |
| ** of a SELECT. |
| ** |
| ** If srcTab and nColumn are both zero, then the pEList expressions |
| ** are evaluated in order to get the data for this row. If nColumn>0 |
| ** then data is pulled from srcTab and pEList is used only to get the |
| ** datatypes for each column. |
| */ |
| static int selectInnerLoop( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The complete select statement being coded */ |
| ExprList *pEList, /* List of values being extracted */ |
| int srcTab, /* Pull data from this table */ |
| int nColumn, /* Number of columns in the source table */ |
| ExprList *pOrderBy, /* If not NULL, sort results using this key */ |
| int distinct, /* If >=0, make sure results are distinct */ |
| int eDest, /* How to dispose of the results */ |
| int iParm, /* An argument to the disposal method */ |
| int iContinue, /* Jump here to continue with next row */ |
| int iBreak, /* Jump here to break out of the inner loop */ |
| char *aff /* affinity string if eDest is SRT_Union */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| int hasDistinct; /* True if the DISTINCT keyword is present */ |
| |
| if( v==0 ) return 0; |
| assert( pEList!=0 ); |
| |
| /* If there was a LIMIT clause on the SELECT statement, then do the check |
| ** to see if this row should be output. |
| */ |
| hasDistinct = distinct>=0 && pEList->nExpr>0; |
| if( pOrderBy==0 && !hasDistinct ){ |
| codeOffset(v, p, iContinue, 0); |
| } |
| |
| /* Pull the requested columns. |
| */ |
| if( nColumn>0 ){ |
| for(i=0; i<nColumn; i++){ |
| sqlite3VdbeAddOp(v, OP_Column, srcTab, i); |
| } |
| }else{ |
| nColumn = pEList->nExpr; |
| sqlite3ExprCodeExprList(pParse, pEList); |
| } |
| |
| /* If the DISTINCT keyword was present on the SELECT statement |
| ** and this row has been seen before, then do not make this row |
| ** part of the result. |
| */ |
| if( hasDistinct ){ |
| assert( pEList!=0 ); |
| assert( pEList->nExpr==nColumn ); |
| codeDistinct(v, distinct, iContinue, nColumn); |
| if( pOrderBy==0 ){ |
| codeOffset(v, p, iContinue, nColumn); |
| } |
| } |
| |
| switch( eDest ){ |
| /* In this mode, write each query result to the key of the temporary |
| ** table iParm. |
| */ |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| case SRT_Union: { |
| sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| if( aff ){ |
| sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
| } |
| sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); |
| break; |
| } |
| |
| /* Construct a record from the query result, but instead of |
| ** saving that record, use it as a key to delete elements from |
| ** the temporary table iParm. |
| */ |
| case SRT_Except: { |
| int addr; |
| addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
| sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); |
| sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); |
| break; |
| } |
| #endif |
| |
| /* Store the result as data using a unique key. |
| */ |
| case SRT_Table: |
| case SRT_VirtualTab: { |
| sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| if( pOrderBy ){ |
| pushOntoSorter(pParse, pOrderBy, p); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); |
| } |
| break; |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
| ** then there should be a single item on the stack. Write this |
| ** item into the set table with bogus data. |
| */ |
| case SRT_Set: { |
| int addr1 = sqlite3VdbeCurrentAddr(v); |
| int addr2; |
| |
| assert( nColumn==1 ); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
| if( pOrderBy ){ |
| /* At first glance you would think we could optimize out the |
| ** ORDER BY in this case since the order of entries in the set |
| ** does not matter. But there might be a LIMIT clause, in which |
| ** case the order does matter */ |
| pushOntoSorter(pParse, pOrderBy, p); |
| }else{ |
| char affinity = (iParm>>16)&0xFF; |
| affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity); |
| sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
| } |
| sqlite3VdbeJumpHere(v, addr2); |
| break; |
| } |
| |
| /* If any row exist in the result set, record that fact and abort. |
| */ |
| case SRT_Exists: { |
| sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); |
| sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
| /* The LIMIT clause will terminate the loop for us */ |
| break; |
| } |
| |
| /* If this is a scalar select that is part of an expression, then |
| ** store the results in the appropriate memory cell and break out |
| ** of the scan loop. |
| */ |
| case SRT_Mem: { |
| assert( nColumn==1 ); |
| if( pOrderBy ){ |
| pushOntoSorter(pParse, pOrderBy, p); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
| /* The LIMIT clause will jump out of the loop for us */ |
| } |
| break; |
| } |
| #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
| |
| /* Send the data to the callback function or to a subroutine. In the |
| ** case of a subroutine, the subroutine itself is responsible for |
| ** popping the data from the stack. |
| */ |
| case SRT_Subroutine: |
| case SRT_Callback: { |
| if( pOrderBy ){ |
| sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
| pushOntoSorter(pParse, pOrderBy, p); |
| }else if( eDest==SRT_Subroutine ){ |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
| } |
| break; |
| } |
| |
| #if !defined(SQLITE_OMIT_TRIGGER) |
| /* Discard the results. This is used for SELECT statements inside |
| ** the body of a TRIGGER. The purpose of such selects is to call |
| ** user-defined functions that have side effects. We do not care |
| ** about the actual results of the select. |
| */ |
| default: { |
| assert( eDest==SRT_Discard ); |
| sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
| break; |
| } |
| #endif |
| } |
| |
| /* Jump to the end of the loop if the LIMIT is reached. |
| */ |
| if( p->iLimit>=0 && pOrderBy==0 ){ |
| sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
| sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); |
| } |
| return 0; |
| } |
| |
| /* |
| ** Given an expression list, generate a KeyInfo structure that records |
| ** the collating sequence for each expression in that expression list. |
| ** |
| ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
| ** KeyInfo structure is appropriate for initializing a virtual index to |
| ** implement that clause. If the ExprList is the result set of a SELECT |
| ** then the KeyInfo structure is appropriate for initializing a virtual |
| ** index to implement a DISTINCT test. |
| ** |
| ** Space to hold the KeyInfo structure is obtain from malloc. The calling |
| ** function is responsible for seeing that this structure is eventually |
| ** freed. Add the KeyInfo structure to the P3 field of an opcode using |
| ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. |
| */ |
| static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ |
| sqlite3 *db = pParse->db; |
| int nExpr; |
| KeyInfo *pInfo; |
| struct ExprList_item *pItem; |
| int i; |
| |
| nExpr = pList->nExpr; |
| pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); |
| if( pInfo ){ |
| pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; |
| pInfo->nField = nExpr; |
| pInfo->enc = ENC(db); |
| for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ |
| CollSeq *pColl; |
| pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
| if( !pColl ){ |
| pColl = db->pDfltColl; |
| } |
| pInfo->aColl[i] = pColl; |
| pInfo->aSortOrder[i] = pItem->sortOrder; |
| } |
| } |
| return pInfo; |
| } |
| |
| |
| /* |
| ** If the inner loop was generated using a non-null pOrderBy argument, |
| ** then the results were placed in a sorter. After the loop is terminated |
| ** we need to run the sorter and output the results. The following |
| ** routine generates the code needed to do that. |
| */ |
| static void generateSortTail( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The SELECT statement */ |
| Vdbe *v, /* Generate code into this VDBE */ |
| int nColumn, /* Number of columns of data */ |
| int eDest, /* Write the sorted results here */ |
| int iParm /* Optional parameter associated with eDest */ |
| ){ |
| int brk = sqlite3VdbeMakeLabel(v); |
| int cont = sqlite3VdbeMakeLabel(v); |
| int addr; |
| int iTab; |
| int pseudoTab; |
| ExprList *pOrderBy = p->pOrderBy; |
| |
| iTab = pOrderBy->iECursor; |
| if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
| pseudoTab = pParse->nTab++; |
| sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); |
| } |
| addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); |
| codeOffset(v, p, cont, 0); |
| if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
| sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
| } |
| sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); |
| switch( eDest ){ |
| case SRT_Table: |
| case SRT_VirtualTab: { |
| sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case SRT_Set: { |
| assert( nColumn==1 ); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
| break; |
| } |
| case SRT_Mem: { |
| assert( nColumn==1 ); |
| sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
| /* The LIMIT clause will terminate the loop for us */ |
| break; |
| } |
| #endif |
| case SRT_Callback: |
| case SRT_Subroutine: { |
| int i; |
| sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); |
| for(i=0; i<nColumn; i++){ |
| sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); |
| } |
| if( eDest==SRT_Callback ){ |
| sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
| } |
| break; |
| } |
| default: { |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| /* Jump to the end of the loop when the LIMIT is reached |
| */ |
| if( p->iLimit>=0 ){ |
| sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
| sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); |
| } |
| |
| /* The bottom of the loop |
| */ |
| sqlite3VdbeResolveLabel(v, cont); |
| sqlite3VdbeAddOp(v, OP_Next, iTab, addr); |
| sqlite3VdbeResolveLabel(v, brk); |
| if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
| sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); |
| } |
| |
| } |
| |
| /* |
| ** Return a pointer to a string containing the 'declaration type' of the |
| ** expression pExpr. The string may be treated as static by the caller. |
| ** |
| ** The declaration type is the exact datatype definition extracted from the |
| ** original CREATE TABLE statement if the expression is a column. The |
| ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
| ** is considered a column can be complex in the presence of subqueries. The |
| ** result-set expression in all of the following SELECT statements is |
| ** considered a column by this function. |
| ** |
| ** SELECT col FROM tbl; |
| ** SELECT (SELECT col FROM tbl; |
| ** SELECT (SELECT col FROM tbl); |
| ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
| ** |
| ** The declaration type for any expression other than a column is NULL. |
| */ |
| static const char *columnType( |
| NameContext *pNC, |
| Expr *pExpr, |
| const char **pzOriginDb, |
| const char **pzOriginTab, |
| const char **pzOriginCol |
| ){ |
| char const *zType = 0; |
| char const *zOriginDb = 0; |
| char const *zOriginTab = 0; |
| char const *zOriginCol = 0; |
| int j; |
| if( pExpr==0 || pNC->pSrcList==0 ) return 0; |
| |
| /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING, |
| ** and LIMIT clauses. But pExpr originates in the result set of a |
| ** SELECT. So pExpr can never contain an AS operator. |
| */ |
| assert( pExpr->op!=TK_AS ); |
| |
| switch( pExpr->op ){ |
| case TK_AGG_COLUMN: |
| case TK_COLUMN: { |
| /* The expression is a column. Locate the table the column is being |
| ** extracted from in NameContext.pSrcList. This table may be real |
| ** database table or a subquery. |
| */ |
| Table *pTab = 0; /* Table structure column is extracted from */ |
| Select *pS = 0; /* Select the column is extracted from */ |
| int iCol = pExpr->iColumn; /* Index of column in pTab */ |
| while( pNC && !pTab ){ |
| SrcList *pTabList = pNC->pSrcList; |
| for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
| if( j<pTabList->nSrc ){ |
| pTab = pTabList->a[j].pTab; |
| pS = pTabList->a[j].pSelect; |
| }else{ |
| pNC = pNC->pNext; |
| } |
| } |
| |
| if( pTab==0 ){ |
| /* FIX ME: |
| ** This can occurs if you have something like "SELECT new.x;" inside |
| ** a trigger. In other words, if you reference the special "new" |
| ** table in the result set of a select. We do not have a good way |
| ** to find the actual table type, so call it "TEXT". This is really |
| ** something of a bug, but I do not know how to fix it. |
| ** |
| ** This code does not produce the correct answer - it just prevents |
| ** a segfault. See ticket #1229. |
| */ |
| zType = "TEXT"; |
| break; |
| } |
| |
| assert( pTab ); |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( pS ){ |
| /* The "table" is actually a sub-select or a view in the FROM clause |
| ** of the SELECT statement. Return the declaration type and origin |
| ** data for the result-set column of the sub-select. |
| */ |
| if( iCol>=0 && iCol<pS->pEList->nExpr ){ |
| /* If iCol is less than zero, then the expression requests the |
| ** rowid of the sub-select or view. This expression is legal (see |
| ** test case misc2.2.2) - it always evaluates to NULL. |
| */ |
| NameContext sNC; |
| Expr *p = pS->pEList->a[iCol].pExpr; |
| sNC.pSrcList = pS->pSrc; |
| sNC.pNext = 0; |
| sNC.pParse = pNC->pParse; |
| zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
| } |
| }else |
| #endif |
| if( pTab->pSchema ){ |
| /* A real table */ |
| assert( !pS ); |
| if( iCol<0 ) iCol = pTab->iPKey; |
| assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
| if( iCol<0 ){ |
| zType = "INTEGER"; |
| zOriginCol = "rowid"; |
| }else{ |
| zType = pTab->aCol[iCol].zType; |
| zOriginCol = pTab->aCol[iCol].zName; |
| } |
| zOriginTab = pTab->zName; |
| if( pNC->pParse ){ |
| int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
| zOriginDb = pNC->pParse->db->aDb[iDb].zName; |
| } |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: { |
| /* The expression is a sub-select. Return the declaration type and |
| ** origin info for the single column in the result set of the SELECT |
| ** statement. |
| */ |
| NameContext sNC; |
| Select *pS = pExpr->pSelect; |
| Expr *p = pS->pEList->a[0].pExpr; |
| sNC.pSrcList = pS->pSrc; |
| sNC.pNext = pNC; |
| sNC.pParse = pNC->pParse; |
| zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
| break; |
| } |
| #endif |
| } |
| |
| if( pzOriginDb ){ |
| assert( pzOriginTab && pzOriginCol ); |
| *pzOriginDb = zOriginDb; |
| *pzOriginTab = zOriginTab; |
| *pzOriginCol = zOriginCol; |
| } |
| return zType; |
| } |
| |
| /* |
| ** Generate code that will tell the VDBE the declaration types of columns |
| ** in the result set. |
| */ |
| static void generateColumnTypes( |
| Parse *pParse, /* Parser context */ |
| SrcList *pTabList, /* List of tables */ |
| ExprList *pEList /* Expressions defining the result set */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| NameContext sNC; |
| sNC.pSrcList = pTabList; |
| sNC.pParse = pParse; |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *p = pEList->a[i].pExpr; |
| const char *zOrigDb = 0; |
| const char *zOrigTab = 0; |
| const char *zOrigCol = 0; |
| const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
| |
| /* The vdbe must make it's own copy of the column-type and other |
| ** column specific strings, in case the schema is reset before this |
| ** virtual machine is deleted. |
| */ |
| sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); |
| sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); |
| sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); |
| sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); |
| } |
| } |
| |
| /* |
| ** Generate code that will tell the VDBE the names of columns |
| ** in the result set. This information is used to provide the |
| ** azCol[] values in the callback. |
| */ |
| static void generateColumnNames( |
| Parse *pParse, /* Parser context */ |
| SrcList *pTabList, /* List of tables */ |
| ExprList *pEList /* Expressions defining the result set */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i, j; |
| sqlite3 *db = pParse->db; |
| int fullNames, shortNames; |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* If this is an EXPLAIN, skip this step */ |
| if( pParse->explain ){ |
| return; |
| } |
| #endif |
| |
| assert( v!=0 ); |
| if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; |
| pParse->colNamesSet = 1; |
| fullNames = (db->flags & SQLITE_FullColNames)!=0; |
| shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
| sqlite3VdbeSetNumCols(v, pEList->nExpr); |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *p; |
| p = pEList->a[i].pExpr; |
| if( p==0 ) continue; |
| if( pEList->a[i].zName ){ |
| char *zName = pEList->a[i].zName; |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); |
| continue; |
| } |
| if( p->op==TK_COLUMN && pTabList ){ |
| Table *pTab; |
| char *zCol; |
| int iCol = p->iColumn; |
| for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} |
| assert( j<pTabList->nSrc ); |
| pTab = pTabList->a[j].pTab; |
| if( iCol<0 ) iCol = pTab->iPKey; |
| assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
| if( iCol<0 ){ |
| zCol = "rowid"; |
| }else{ |
| zCol = pTab->aCol[iCol].zName; |
| } |
| if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
| }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ |
| char *zName = 0; |
| char *zTab; |
| |
| zTab = pTabList->a[j].zAlias; |
| if( fullNames || zTab==0 ) zTab = pTab->zName; |
| sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); |
| }else{ |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); |
| } |
| }else if( p->span.z && p->span.z[0] ){ |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
| /* sqlite3VdbeCompressSpace(v, addr); */ |
| }else{ |
| char zName[30]; |
| assert( p->op!=TK_COLUMN || pTabList==0 ); |
| sprintf(zName, "column%d", i+1); |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); |
| } |
| } |
| generateColumnTypes(pParse, pTabList, pEList); |
| } |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* |
| ** Name of the connection operator, used for error messages. |
| */ |
| static const char *selectOpName(int id){ |
| char *z; |
| switch( id ){ |
| case TK_ALL: z = "UNION ALL"; break; |
| case TK_INTERSECT: z = "INTERSECT"; break; |
| case TK_EXCEPT: z = "EXCEPT"; break; |
| default: z = "UNION"; break; |
| } |
| return z; |
| } |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| /* |
| ** Forward declaration |
| */ |
| static int prepSelectStmt(Parse*, Select*); |
| |
| /* |
| ** Given a SELECT statement, generate a Table structure that describes |
| ** the result set of that SELECT. |
| */ |
| Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ |
| Table *pTab; |
| int i, j; |
| ExprList *pEList; |
| Column *aCol, *pCol; |
| |
| while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
| if( prepSelectStmt(pParse, pSelect) ){ |
| return 0; |
| } |
| if( sqlite3SelectResolve(pParse, pSelect, 0) ){ |
| return 0; |
| } |
| pTab = sqliteMalloc( sizeof(Table) ); |
| if( pTab==0 ){ |
| return 0; |
| } |
| pTab->nRef = 1; |
| pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; |
| pEList = pSelect->pEList; |
| pTab->nCol = pEList->nExpr; |
| assert( pTab->nCol>0 ); |
| pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); |
| for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ |
| Expr *p, *pR; |
| char *zType; |
| char *zName; |
| char *zBasename; |
| CollSeq *pColl; |
| int cnt; |
| NameContext sNC; |
| |
| /* Get an appropriate name for the column |
| */ |
| p = pEList->a[i].pExpr; |
| assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); |
| if( (zName = pEList->a[i].zName)!=0 ){ |
| /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
| zName = sqliteStrDup(zName); |
| }else if( p->op==TK_DOT |
| && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ |
| /* For columns of the from A.B use B as the name */ |
| zName = sqlite3MPrintf("%T", &pR->token); |
| }else if( p->span.z && p->span.z[0] ){ |
| /* Use the original text of the column expression as its name */ |
| zName = sqlite3MPrintf("%T", &p->span); |
| }else{ |
| /* If all else fails, make up a name */ |
| zName = sqlite3MPrintf("column%d", i+1); |
| } |
| sqlite3Dequote(zName); |
| if( sqlite3MallocFailed() ){ |
| sqliteFree(zName); |
| sqlite3DeleteTable(0, pTab); |
| return 0; |
| } |
| |
| /* Make sure the column name is unique. If the name is not unique, |
| ** append a integer to the name so that it becomes unique. |
| */ |
| zBasename = zName; |
| for(j=cnt=0; j<i; j++){ |
| if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
| zName = sqlite3MPrintf("%s:%d", zBasename, ++cnt); |
| j = -1; |
| if( zName==0 ) break; |
| } |
| } |
| if( zBasename!=zName ){ |
| sqliteFree(zBasename); |
| } |
| pCol->zName = zName; |
| |
| /* Get the typename, type affinity, and collating sequence for the |
| ** column. |
| */ |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pSrcList = pSelect->pSrc; |
| zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); |
| pCol->zType = zType; |
| pCol->affinity = sqlite3ExprAffinity(p); |
| pColl = sqlite3ExprCollSeq(pParse, p); |
| if( pColl ){ |
| pCol->zColl = sqliteStrDup(pColl->zName); |
| } |
| } |
| pTab->iPKey = -1; |
| return pTab; |
| } |
| |
| /* |
| ** Prepare a SELECT statement for processing by doing the following |
| ** things: |
| ** |
| ** (1) Make sure VDBE cursor numbers have been assigned to every |
| ** element of the FROM clause. |
| ** |
| ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
| ** defines FROM clause. When views appear in the FROM clause, |
| ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
| ** that implements the view. A copy is made of the view's SELECT |
| ** statement so that we can freely modify or delete that statement |
| ** without worrying about messing up the presistent representation |
| ** of the view. |
| ** |
| ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword |
| ** on joins and the ON and USING clause of joins. |
| ** |
| ** (4) Scan the list of columns in the result set (pEList) looking |
| ** for instances of the "*" operator or the TABLE.* operator. |
| ** If found, expand each "*" to be every column in every table |
| ** and TABLE.* to be every column in TABLE. |
| ** |
| ** Return 0 on success. If there are problems, leave an error message |
| ** in pParse and return non-zero. |
| */ |
| static int prepSelectStmt(Parse *pParse, Select *p){ |
| int i, j, k, rc; |
| SrcList *pTabList; |
| ExprList *pEList; |
| struct SrcList_item *pFrom; |
| |
| if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ |
| return 1; |
| } |
| pTabList = p->pSrc; |
| pEList = p->pEList; |
| |
| /* Make sure cursor numbers have been assigned to all entries in |
| ** the FROM clause of the SELECT statement. |
| */ |
| sqlite3SrcListAssignCursors(pParse, p->pSrc); |
| |
| /* Look up every table named in the FROM clause of the select. If |
| ** an entry of the FROM clause is a subquery instead of a table or view, |
| ** then create a transient table structure to describe the subquery. |
| */ |
| for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
| Table *pTab; |
| if( pFrom->pTab!=0 ){ |
| /* This statement has already been prepared. There is no need |
| ** to go further. */ |
| assert( i==0 ); |
| return 0; |
| } |
| if( pFrom->zName==0 ){ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* A sub-query in the FROM clause of a SELECT */ |
| assert( pFrom->pSelect!=0 ); |
| if( pFrom->zAlias==0 ){ |
| pFrom->zAlias = |
| sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); |
| } |
| assert( pFrom->pTab==0 ); |
| pFrom->pTab = pTab = |
| sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); |
| if( pTab==0 ){ |
| return 1; |
| } |
| /* The isTransient flag indicates that the Table structure has been |
| ** dynamically allocated and may be freed at any time. In other words, |
| ** pTab is not pointing to a persistent table structure that defines |
| ** part of the schema. */ |
| pTab->isTransient = 1; |
| #endif |
| }else{ |
| /* An ordinary table or view name in the FROM clause */ |
| assert( pFrom->pTab==0 ); |
| pFrom->pTab = pTab = |
| sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); |
| if( pTab==0 ){ |
| return 1; |
| } |
| pTab->nRef++; |
| #ifndef SQLITE_OMIT_VIEW |
| if( pTab->pSelect ){ |
| /* We reach here if the named table is a really a view */ |
| if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| return 1; |
| } |
| /* If pFrom->pSelect!=0 it means we are dealing with a |
| ** view within a view. The SELECT structure has already been |
| ** copied by the outer view so we can skip the copy step here |
| ** in the inner view. |
| */ |
| if( pFrom->pSelect==0 ){ |
| pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); |
| } |
| } |
| #endif |
| } |
| } |
| |
| /* Process NATURAL keywords, and ON and USING clauses of joins. |
| */ |
| if( sqliteProcessJoin(pParse, p) ) return 1; |
| |
| /* For every "*" that occurs in the column list, insert the names of |
| ** all columns in all tables. And for every TABLE.* insert the names |
| ** of all columns in TABLE. The parser inserted a special expression |
| ** with the TK_ALL operator for each "*" that it found in the column list. |
| ** The following code just has to locate the TK_ALL expressions and expand |
| ** each one to the list of all columns in all tables. |
| ** |
| ** The first loop just checks to see if there are any "*" operators |
| ** that need expanding. |
| */ |
| for(k=0; k<pEList->nExpr; k++){ |
| Expr *pE = pEList->a[k].pExpr; |
| if( pE->op==TK_ALL ) break; |
| if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL |
| && pE->pLeft && pE->pLeft->op==TK_ID ) break; |
| } |
| rc = 0; |
| if( k<pEList->nExpr ){ |
| /* |
| ** If we get here it means the result set contains one or more "*" |
| ** operators that need to be expanded. Loop through each expression |
| ** in the result set and expand them one by one. |
| */ |
| struct ExprList_item *a = pEList->a; |
| ExprList *pNew = 0; |
| int flags = pParse->db->flags; |
| int longNames = (flags & SQLITE_FullColNames)!=0 && |
| (flags & SQLITE_ShortColNames)==0; |
| |
| for(k=0; k<pEList->nExpr; k++){ |
| Expr *pE = a[k].pExpr; |
| if( pE->op!=TK_ALL && |
| (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ |
| /* This particular expression does not need to be expanded. |
| */ |
| pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); |
| if( pNew ){ |
| pNew->a[pNew->nExpr-1].zName = a[k].zName; |
| }else{ |
| rc = 1; |
| } |
| a[k].pExpr = 0; |
| a[k].zName = 0; |
| }else{ |
| /* This expression is a "*" or a "TABLE.*" and needs to be |
| ** expanded. */ |
| int tableSeen = 0; /* Set to 1 when TABLE matches */ |
| char *zTName; /* text of name of TABLE */ |
| if( pE->op==TK_DOT && pE->pLeft ){ |
| zTName = sqlite3NameFromToken(&pE->pLeft->token); |
| }else{ |
| zTName = 0; |
| } |
| for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
| Table *pTab = pFrom->pTab; |
| char *zTabName = pFrom->zAlias; |
| if( zTabName==0 || zTabName[0]==0 ){ |
| zTabName = pTab->zName; |
| } |
| if( zTName && (zTabName==0 || zTabName[0]==0 || |
| sqlite3StrICmp(zTName, zTabName)!=0) ){ |
| continue; |
| } |
| tableSeen = 1; |
| for(j=0; j<pTab->nCol; j++){ |
| Expr *pExpr, *pRight; |
| char *zName = pTab->aCol[j].zName; |
| |
| if( i>0 ){ |
| struct SrcList_item *pLeft = &pTabList->a[i-1]; |
| if( (pLeft->jointype & JT_NATURAL)!=0 && |
| columnIndex(pLeft->pTab, zName)>=0 ){ |
| /* In a NATURAL join, omit the join columns from the |
| ** table on the right */ |
| continue; |
| } |
| if( sqlite3IdListIndex(pLeft->pUsing, zName)>=0 ){ |
| /* In a join with a USING clause, omit columns in the |
| ** using clause from the table on the right. */ |
| continue; |
| } |
| } |
| pRight = sqlite3Expr(TK_ID, 0, 0, 0); |
| if( pRight==0 ) break; |
| setToken(&pRight->token, zName); |
| if( zTabName && (longNames || pTabList->nSrc>1) ){ |
| Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); |
| pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); |
| if( pExpr==0 ) break; |
| setToken(&pLeft->token, zTabName); |
| setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); |
| pExpr->span.dyn = 1; |
| pExpr->token.z = 0; |
| pExpr->token.n = 0; |
| pExpr->token.dyn = 0; |
| }else{ |
| pExpr = pRight; |
| pExpr->span = pExpr->token; |
| } |
| if( longNames ){ |
| pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); |
| }else{ |
| pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); |
| } |
| } |
| } |
| if( !tableSeen ){ |
| if( zTName ){ |
| sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
| }else{ |
| sqlite3ErrorMsg(pParse, "no tables specified"); |
| } |
| rc = 1; |
| } |
| sqliteFree(zTName); |
| } |
| } |
| sqlite3ExprListDelete(pEList); |
| p->pEList = pNew; |
| } |
| return rc; |
| } |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* |
| ** This routine associates entries in an ORDER BY expression list with |
| ** columns in a result. For each ORDER BY expression, the opcode of |
| ** the top-level node is changed to TK_COLUMN and the iColumn value of |
| ** the top-level node is filled in with column number and the iTable |
| ** value of the top-level node is filled with iTable parameter. |
| ** |
| ** If there are prior SELECT clauses, they are processed first. A match |
| ** in an earlier SELECT takes precedence over a later SELECT. |
| ** |
| ** Any entry that does not match is flagged as an error. The number |
| ** of errors is returned. |
| */ |
| static int matchOrderbyToColumn( |
| Parse *pParse, /* A place to leave error messages */ |
| Select *pSelect, /* Match to result columns of this SELECT */ |
| ExprList *pOrderBy, /* The ORDER BY values to match against columns */ |
| int iTable, /* Insert this value in iTable */ |
| int mustComplete /* If TRUE all ORDER BYs must match */ |
| ){ |
| int nErr = 0; |
| int i, j; |
| ExprList *pEList; |
| |
| if( pSelect==0 || pOrderBy==0 ) return 1; |
| if( mustComplete ){ |
| for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } |
| } |
| if( prepSelectStmt(pParse, pSelect) ){ |
| return 1; |
| } |
| if( pSelect->pPrior ){ |
| if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ |
| return 1; |
| } |
| } |
| pEList = pSelect->pEList; |
| for(i=0; i<pOrderBy->nExpr; i++){ |
| Expr *pE = pOrderBy->a[i].pExpr; |
| int iCol = -1; |
| if( pOrderBy->a[i].done ) continue; |
| if( sqlite3ExprIsInteger(pE, &iCol) ){ |
| if( iCol<=0 || iCol>pEList->nExpr ){ |
| sqlite3ErrorMsg(pParse, |
| "ORDER BY position %d should be between 1 and %d", |
| iCol, pEList->nExpr); |
| nErr++; |
| break; |
| } |
| if( !mustComplete ) continue; |
| iCol--; |
| } |
| for(j=0; iCol<0 && j<pEList->nExpr; j++){ |
| if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ |
| char *zName, *zLabel; |
| zName = pEList->a[j].zName; |
| zLabel = sqlite3NameFromToken(&pE->token); |
| assert( zLabel!=0 ); |
| if( sqlite3StrICmp(zName, zLabel)==0 ){ |
| iCol = j; |
| } |
| sqliteFree(zLabel); |
| } |
| if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){ |
| iCol = j; |
| } |
| } |
| if( iCol>=0 ){ |
| pE->op = TK_COLUMN; |
| pE->iColumn = iCol; |
| pE->iTable = iTable; |
| pE->iAgg = -1; |
| pOrderBy->a[i].done = 1; |
| } |
| if( iCol<0 && mustComplete ){ |
| sqlite3ErrorMsg(pParse, |
| "ORDER BY term number %d does not match any result column", i+1); |
| nErr++; |
| break; |
| } |
| } |
| return nErr; |
| } |
| #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| /* |
| ** Get a VDBE for the given parser context. Create a new one if necessary. |
| ** If an error occurs, return NULL and leave a message in pParse. |
| */ |
| Vdbe *sqlite3GetVdbe(Parse *pParse){ |
| Vdbe *v = pParse->pVdbe; |
| if( v==0 ){ |
| v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); |
| } |
| return v; |
| } |
| |
| |
| /* |
| ** Compute the iLimit and iOffset fields of the SELECT based on the |
| ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
| ** that appear in the original SQL statement after the LIMIT and OFFSET |
| ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
| ** are the integer memory register numbers for counters used to compute |
| ** the limit and offset. If there is no limit and/or offset, then |
| ** iLimit and iOffset are negative. |
| ** |
| ** This routine changes the values of iLimit and iOffset only if |
| ** a limit or offset is defined by pLimit and pOffset. iLimit and |
| ** iOffset should have been preset to appropriate default values |
| ** (usually but not always -1) prior to calling this routine. |
| ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
| ** redefined. The UNION ALL operator uses this property to force |
| ** the reuse of the same limit and offset registers across multiple |
| ** SELECT statements. |
| */ |
| static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
| Vdbe *v = 0; |
| int iLimit = 0; |
| int iOffset; |
| int addr1, addr2; |
| |
| /* |
| ** "LIMIT -1" always shows all rows. There is some |
| ** contraversy about what the correct behavior should be. |
| ** The current implementation interprets "LIMIT 0" to mean |
| ** no rows. |
| */ |
| if( p->pLimit ){ |
| p->iLimit = iLimit = pParse->nMem; |
| pParse->nMem += 2; |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| sqlite3ExprCode(pParse, p->pLimit); |
| sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
| sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0); |
| VdbeComment((v, "# LIMIT counter")); |
| sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); |
| } |
| if( p->pOffset ){ |
| p->iOffset = iOffset = pParse->nMem++; |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| sqlite3ExprCode(pParse, p->pOffset); |
| sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
| sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); |
| VdbeComment((v, "# OFFSET counter")); |
| addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
| sqlite3VdbeJumpHere(v, addr1); |
| if( p->pLimit ){ |
| sqlite3VdbeAddOp(v, OP_Add, 0, 0); |
| } |
| } |
| if( p->pLimit ){ |
| addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); |
| addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
| sqlite3VdbeJumpHere(v, addr1); |
| sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); |
| VdbeComment((v, "# LIMIT+OFFSET")); |
| sqlite3VdbeJumpHere(v, addr2); |
| } |
| } |
| |
| /* |
| ** Allocate a virtual index to use for sorting. |
| */ |
| static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ |
| if( pOrderBy ){ |
| int addr; |
| assert( pOrderBy->iECursor==0 ); |
| pOrderBy->iECursor = pParse->nTab++; |
| addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenVirtual, |
| pOrderBy->iECursor, pOrderBy->nExpr+1); |
| assert( p->addrOpenVirt[2] == -1 ); |
| p->addrOpenVirt[2] = addr; |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* |
| ** Return the appropriate collating sequence for the iCol-th column of |
| ** the result set for the compound-select statement "p". Return NULL if |
| ** the column has no default collating sequence. |
| ** |
| ** The collating sequence for the compound select is taken from the |
| ** left-most term of the select that has a collating sequence. |
| */ |
| static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
| CollSeq *pRet; |
| if( p->pPrior ){ |
| pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
| }else{ |
| pRet = 0; |
| } |
| if( pRet==0 ){ |
| pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
| } |
| return pRet; |
| } |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* |
| ** This routine is called to process a query that is really the union |
| ** or intersection of two or more separate queries. |
| ** |
| ** "p" points to the right-most of the two queries. the query on the |
| ** left is p->pPrior. The left query could also be a compound query |
| ** in which case this routine will be called recursively. |
| ** |
| ** The results of the total query are to be written into a destination |
| ** of type eDest with parameter iParm. |
| ** |
| ** Example 1: Consider a three-way compound SQL statement. |
| ** |
| ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
| ** |
| ** This statement is parsed up as follows: |
| ** |
| ** SELECT c FROM t3 |
| ** | |
| ** `-----> SELECT b FROM t2 |
| ** | |
| ** `------> SELECT a FROM t1 |
| ** |
| ** The arrows in the diagram above represent the Select.pPrior pointer. |
| ** So if this routine is called with p equal to the t3 query, then |
| ** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
| ** |
| ** Notice that because of the way SQLite parses compound SELECTs, the |
| ** individual selects always group from left to right. |
| */ |
| static int multiSelect( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The right-most of SELECTs to be coded */ |
| int eDest, /* \___ Store query results as specified */ |
| int iParm, /* / by these two parameters. */ |
| char *aff /* If eDest is SRT_Union, the affinity string */ |
| ){ |
| int rc = SQLITE_OK; /* Success code from a subroutine */ |
| Select *pPrior; /* Another SELECT immediately to our left */ |
| Vdbe *v; /* Generate code to this VDBE */ |
| int nCol; /* Number of columns in the result set */ |
| ExprList *pOrderBy; /* The ORDER BY clause on p */ |
| int aSetP2[2]; /* Set P2 value of these op to number of columns */ |
| int nSetP2 = 0; /* Number of slots in aSetP2[] used */ |
| |
| /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
| ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
| */ |
| if( p==0 || p->pPrior==0 ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| pPrior = p->pPrior; |
| assert( pPrior->pRightmost!=pPrior ); |
| assert( pPrior->pRightmost==p->pRightmost ); |
| if( pPrior->pOrderBy ){ |
| sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
| selectOpName(p->op)); |
| rc = 1; |
| goto multi_select_end; |
| } |
| if( pPrior->pLimit ){ |
| sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
| selectOpName(p->op)); |
| rc = 1; |
| goto multi_select_end; |
| } |
| |
| /* Make sure we have a valid query engine. If not, create a new one. |
| */ |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| |
| /* Create the destination temporary table if necessary |
| */ |
| if( eDest==SRT_VirtualTab ){ |
| assert( p->pEList ); |
| assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
| aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenVirtual, iParm, 0); |
| eDest = SRT_Table; |
| } |
| |
| /* Generate code for the left and right SELECT statements. |
| */ |
| pOrderBy = p->pOrderBy; |
| switch( p->op ){ |
| case TK_ALL: { |
| if( pOrderBy==0 ){ |
| int addr = 0; |
| assert( !pPrior->pLimit ); |
| pPrior->pLimit = p->pLimit; |
| pPrior->pOffset = p->pOffset; |
| rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); |
| p->pLimit = 0; |
| p->pOffset = 0; |
| if( rc ){ |
| goto multi_select_end; |
| } |
| p->pPrior = 0; |
| p->iLimit = pPrior->iLimit; |
| p->iOffset = pPrior->iOffset; |
| if( p->iLimit>=0 ){ |
| addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); |
| VdbeComment((v, "# Jump ahead if LIMIT reached")); |
| } |
| rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); |
| p->pPrior = pPrior; |
| if( rc ){ |
| goto multi_select_end; |
| } |
| if( addr ){ |
| sqlite3VdbeJumpHere(v, addr); |
| } |
| break; |
| } |
| /* For UNION ALL ... ORDER BY fall through to the next case */ |
| } |
| case TK_EXCEPT: |
| case TK_UNION: { |
| int unionTab; /* Cursor number of the temporary table holding result */ |
| int op = 0; /* One of the SRT_ operations to apply to self */ |
| int priorOp; /* The SRT_ operation to apply to prior selects */ |
| Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
| int addr; |
| |
| priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; |
| if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ |
| /* We can reuse a temporary table generated by a SELECT to our |
| ** right. |
| */ |
| unionTab = iParm; |
| }else{ |
| /* We will need to create our own temporary table to hold the |
| ** intermediate results. |
| */ |
| unionTab = pParse->nTab++; |
| if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, unionTab, 0); |
| if( priorOp==SRT_Table ){ |
| assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
| aSetP2[nSetP2++] = addr; |
| }else{ |
| assert( p->addrOpenVirt[0] == -1 ); |
| p->addrOpenVirt[0] = addr; |
| p->pRightmost->usesVirt = 1; |
| } |
| createSortingIndex(pParse, p, pOrderBy); |
| assert( p->pEList ); |
| } |
| |
| /* Code the SELECT statements to our left |
| */ |
| assert( !pPrior->pOrderBy ); |
| rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| /* Code the current SELECT statement |
| */ |
| switch( p->op ){ |
| case TK_EXCEPT: op = SRT_Except; break; |
| case TK_UNION: op = SRT_Union; break; |
| case TK_ALL: op = SRT_Table; break; |
| } |
| p->pPrior = 0; |
| p->pOrderBy = 0; |
| p->disallowOrderBy = pOrderBy!=0; |
| pLimit = p->pLimit; |
| p->pLimit = 0; |
| pOffset = p->pOffset; |
| p->pOffset = 0; |
| rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); |
| p->pPrior = pPrior; |
| p->pOrderBy = pOrderBy; |
| sqlite3ExprDelete(p->pLimit); |
| p->pLimit = pLimit; |
| p->pOffset = pOffset; |
| p->iLimit = -1; |
| p->iOffset = -1; |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| |
| /* Convert the data in the temporary table into whatever form |
| ** it is that we currently need. |
| */ |
| if( eDest!=priorOp || unionTab!=iParm ){ |
| int iCont, iBreak, iStart; |
| assert( p->pEList ); |
| if( eDest==SRT_Callback ){ |
| Select *pFirst = p; |
| while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
| generateColumnNames(pParse, 0, pFirst->pEList); |
| } |
| iBreak = sqlite3VdbeMakeLabel(v); |
| iCont = sqlite3VdbeMakeLabel(v); |
| computeLimitRegisters(pParse, p, iBreak); |
| sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); |
| iStart = sqlite3VdbeCurrentAddr(v); |
| rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, |
| pOrderBy, -1, eDest, iParm, |
| iCont, iBreak, 0); |
| if( rc ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| sqlite3VdbeResolveLabel(v, iCont); |
| sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); |
| } |
| break; |
| } |
| case TK_INTERSECT: { |
| int tab1, tab2; |
| int iCont, iBreak, iStart; |
| Expr *pLimit, *pOffset; |
| int addr; |
| |
| /* INTERSECT is different from the others since it requires |
| ** two temporary tables. Hence it has its own case. Begin |
| ** by allocating the tables we will need. |
| */ |
| tab1 = pParse->nTab++; |
| tab2 = pParse->nTab++; |
| if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| createSortingIndex(pParse, p, pOrderBy); |
| |
| addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, tab1, 0); |
| assert( p->addrOpenVirt[0] == -1 ); |
| p->addrOpenVirt[0] = addr; |
| p->pRightmost->usesVirt = 1; |
| assert( p->pEList ); |
| |
| /* Code the SELECTs to our left into temporary table "tab1". |
| */ |
| rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| /* Code the current SELECT into temporary table "tab2" |
| */ |
| addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, tab2, 0); |
| assert( p->addrOpenVirt[1] == -1 ); |
| p->addrOpenVirt[1] = addr; |
| p->pPrior = 0; |
| pLimit = p->pLimit; |
| p->pLimit = 0; |
| pOffset = p->pOffset; |
| p->pOffset = 0; |
| rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); |
| p->pPrior = pPrior; |
| sqlite3ExprDelete(p->pLimit); |
| p->pLimit = pLimit; |
| p->pOffset = pOffset; |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| /* Generate code to take the intersection of the two temporary |
| ** tables. |
| */ |
| assert( p->pEList ); |
| if( eDest==SRT_Callback ){ |
| Select *pFirst = p; |
| while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
| generateColumnNames(pParse, 0, pFirst->pEList); |
| } |
| iBreak = sqlite3VdbeMakeLabel(v); |
| iCont = sqlite3VdbeMakeLabel(v); |
| computeLimitRegisters(pParse, p, iBreak); |
| sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); |
| iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); |
| sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); |
| rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, |
| pOrderBy, -1, eDest, iParm, |
| iCont, iBreak, 0); |
| if( rc ){ |
| rc = 1; |
| goto multi_select_end; |
| } |
| sqlite3VdbeResolveLabel(v, iCont); |
| sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| sqlite3VdbeAddOp(v, OP_Close, tab2, 0); |
| sqlite3VdbeAddOp(v, OP_Close, tab1, 0); |
| break; |
| } |
| } |
| |
| /* Make sure all SELECTs in the statement have the same number of elements |
| ** in their result sets. |
| */ |
| assert( p->pEList && pPrior->pEList ); |
| if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
| sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
| " do not have the same number of result columns", selectOpName(p->op)); |
| rc = 1; |
| goto multi_select_end; |
| } |
| |
| /* Set the number of columns in temporary tables |
| */ |
| nCol = p->pEList->nExpr; |
| while( nSetP2 ){ |
| sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); |
| } |
| |
| /* Compute collating sequences used by either the ORDER BY clause or |
| ** by any temporary tables needed to implement the compound select. |
| ** Attach the KeyInfo structure to all temporary tables. Invoke the |
| ** ORDER BY processing if there is an ORDER BY clause. |
| ** |
| ** This section is run by the right-most SELECT statement only. |
| ** SELECT statements to the left always skip this part. The right-most |
| ** SELECT might also skip this part if it has no ORDER BY clause and |
| ** no temp tables are required. |
| */ |
| if( pOrderBy || p->usesVirt ){ |
| int i; /* Loop counter */ |
| KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
| Select *pLoop; /* For looping through SELECT statements */ |
| CollSeq **apColl; |
| CollSeq **aCopy; |
| |
| assert( p->pRightmost==p ); |
| pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nCol*2*sizeof(CollSeq*) + nCol); |
| if( !pKeyInfo ){ |
| rc = SQLITE_NOMEM; |
| goto multi_select_end; |
| } |
| |
| pKeyInfo->enc = ENC(pParse->db); |
| pKeyInfo->nField = nCol; |
| |
| for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
| *apColl = multiSelectCollSeq(pParse, p, i); |
| if( 0==*apColl ){ |
| *apColl = pParse->db->pDfltColl; |
| } |
| } |
| |
| for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
| for(i=0; i<2; i++){ |
| int addr = pLoop->addrOpenVirt[i]; |
| if( addr<0 ){ |
| /* If [0] is unused then [1] is also unused. So we can |
| ** always safely abort as soon as the first unused slot is found */ |
| assert( pLoop->addrOpenVirt[1]<0 ); |
| break; |
| } |
| sqlite3VdbeChangeP2(v, addr, nCol); |
| sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); |
| } |
| } |
| |
| if( pOrderBy ){ |
| struct ExprList_item *pOTerm = pOrderBy->a; |
| int nOrderByExpr = pOrderBy->nExpr; |
| int addr; |
| u8 *pSortOrder; |
| |
| aCopy = &pKeyInfo->aColl[nCol]; |
| pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; |
| memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); |
| apColl = pKeyInfo->aColl; |
| for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ |
| Expr *pExpr = pOTerm->pExpr; |
| char *zName = pOTerm->zName; |
| assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol ); |
| if( zName ){ |
| *apColl = sqlite3LocateCollSeq(pParse, zName, -1); |
| }else{ |
| *apColl = aCopy[pExpr->iColumn]; |
| } |
| *pSortOrder = pOTerm->sortOrder; |
| } |
| assert( p->pRightmost==p ); |
| assert( p->addrOpenVirt[2]>=0 ); |
| addr = p->addrOpenVirt[2]; |
| sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2); |
| pKeyInfo->nField = nOrderByExpr; |
| sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
| pKeyInfo = 0; |
| generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); |
| } |
| |
| sqliteFree(pKeyInfo); |
| } |
| |
| multi_select_end: |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* |
| ** Scan through the expression pExpr. Replace every reference to |
| ** a column in table number iTable with a copy of the iColumn-th |
| ** entry in pEList. (But leave references to the ROWID column |
| ** unchanged.) |
| ** |
| ** This routine is part of the flattening procedure. A subquery |
| ** whose result set is defined by pEList appears as entry in the |
| ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
| ** FORM clause entry is iTable. This routine make the necessary |
| ** changes to pExpr so that it refers directly to the source table |
| ** of the subquery rather the result set of the subquery. |
| */ |
| static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ |
| static void substSelect(Select *, int, ExprList *); /* Forward Decl */ |
| static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ |
| if( pExpr==0 ) return; |
| if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
| if( pExpr->iColumn<0 ){ |
| pExpr->op = TK_NULL; |
| }else{ |
| Expr *pNew; |
| assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); |
| pNew = pEList->a[pExpr->iColumn].pExpr; |
| assert( pNew!=0 ); |
| pExpr->op = pNew->op; |
| assert( pExpr->pLeft==0 ); |
| pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); |
| assert( pExpr->pRight==0 ); |
| pExpr->pRight = sqlite3ExprDup(pNew->pRight); |
| assert( pExpr->pList==0 ); |
| pExpr->pList = sqlite3ExprListDup(pNew->pList); |
| pExpr->iTable = pNew->iTable; |
| pExpr->iColumn = pNew->iColumn; |
| pExpr->iAgg = pNew->iAgg; |
| sqlite3TokenCopy(&pExpr->token, &pNew->token); |
| sqlite3TokenCopy(&pExpr->span, &pNew->span); |
| pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); |
| pExpr->flags = pNew->flags; |
| } |
| }else{ |
| substExpr(pExpr->pLeft, iTable, pEList); |
| substExpr(pExpr->pRight, iTable, pEList); |
| substSelect(pExpr->pSelect, iTable, pEList); |
| substExprList(pExpr->pList, iTable, pEList); |
| } |
| } |
| static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nExpr; i++){ |
| substExpr(pList->a[i].pExpr, iTable, pEList); |
| } |
| } |
| static void substSelect(Select *p, int iTable, ExprList *pEList){ |
| if( !p ) return; |
| substExprList(p->pEList, iTable, pEList); |
| substExprList(p->pGroupBy, iTable, pEList); |
| substExprList(p->pOrderBy, iTable, pEList); |
| substExpr(p->pHaving, iTable, pEList); |
| substExpr(p->pWhere, iTable, pEList); |
| } |
| #endif /* !defined(SQLITE_OMIT_VIEW) */ |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* |
| ** This routine attempts to flatten subqueries in order to speed |
| ** execution. It returns 1 if it makes changes and 0 if no flattening |
| ** occurs. |
| ** |
| ** To understand the concept of flattening, consider the following |
| ** query: |
| ** |
| ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
| ** |
| ** The default way of implementing this query is to execute the |
| ** subquery first and store the results in a temporary table, then |
| ** run the outer query on that temporary table. This requires two |
| ** passes over the data. Furthermore, because the temporary table |
| ** has no indices, the WHERE clause on the outer query cannot be |
| ** optimized. |
| ** |
| ** This routine attempts to rewrite queries such as the above into |
| ** a single flat select, like this: |
| ** |
| ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
| ** |
| ** The code generated for this simpification gives the same result |
| ** but only has to scan the data once. And because indices might |
| ** exist on the table t1, a complete scan of the data might be |
| ** avoided. |
| ** |
| ** Flattening is only attempted if all of the following are true: |
| ** |
| ** (1) The subquery and the outer query do not both use aggregates. |
| ** |
| ** (2) The subquery is not an aggregate or the outer query is not a join. |
| ** |
| ** (3) The subquery is not the right operand of a left outer join, or |
| ** the subquery is not itself a join. (Ticket #306) |
| ** |
| ** (4) The subquery is not DISTINCT or the outer query is not a join. |
| ** |
| ** (5) The subquery is not DISTINCT or the outer query does not use |
| ** aggregates. |
| ** |
| ** (6) The subquery does not use aggregates or the outer query is not |
| ** DISTINCT. |
| ** |
| ** (7) The subquery has a FROM clause. |
| ** |
| ** (8) The subquery does not use LIMIT or the outer query is not a join. |
| ** |
| ** (9) The subquery does not use LIMIT or the outer query does not use |
| ** aggregates. |
| ** |
| ** (10) The subquery does not use aggregates or the outer query does not |
| ** use LIMIT. |
| ** |
| ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
| ** |
| ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the |
| ** subquery has no WHERE clause. (added by ticket #350) |
| ** |
| ** (13) The subquery and outer query do not both use LIMIT |
| ** |
| ** (14) The subquery does not use OFFSET |
| ** |
| ** In this routine, the "p" parameter is a pointer to the outer query. |
| ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
| ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
| ** |
| ** If flattening is not attempted, this routine is a no-op and returns 0. |
| ** If flattening is attempted this routine returns 1. |
| ** |
| ** All of the expression analysis must occur on both the outer query and |
| ** the subquery before this routine runs. |
| */ |
| static int flattenSubquery( |
| Select *p, /* The parent or outer SELECT statement */ |
| int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
| int isAgg, /* True if outer SELECT uses aggregate functions */ |
| int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
| ){ |
| Select *pSub; /* The inner query or "subquery" */ |
| SrcList *pSrc; /* The FROM clause of the outer query */ |
| SrcList *pSubSrc; /* The FROM clause of the subquery */ |
| ExprList *pList; /* The result set of the outer query */ |
| int iParent; /* VDBE cursor number of the pSub result set temp table */ |
| int i; /* Loop counter */ |
| Expr *pWhere; /* The WHERE clause */ |
| struct SrcList_item *pSubitem; /* The subquery */ |
| |
| /* Check to see if flattening is permitted. Return 0 if not. |
| */ |
| if( p==0 ) return 0; |
| pSrc = p->pSrc; |
| assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
| pSubitem = &pSrc->a[iFrom]; |
| pSub = pSubitem->pSelect; |
| assert( pSub!=0 ); |
| if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
| if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
| pSubSrc = pSub->pSrc; |
| assert( pSubSrc ); |
| /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
| ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET |
| ** because they could be computed at compile-time. But when LIMIT and OFFSET |
| ** became arbitrary expressions, we were forced to add restrictions (13) |
| ** and (14). */ |
| if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
| if( pSub->pOffset ) return 0; /* Restriction (14) */ |
| if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
| if( (pSub->isDistinct || pSub->pLimit) |
| && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ |
| return 0; |
| } |
| if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ |
| if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ |
| return 0; /* Restriction (11) */ |
| } |
| |
| /* Restriction 3: If the subquery is a join, make sure the subquery is |
| ** not used as the right operand of an outer join. Examples of why this |
| ** is not allowed: |
| ** |
| ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
| ** |
| ** If we flatten the above, we would get |
| ** |
| ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
| ** |
| ** which is not at all the same thing. |
| */ |
| if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){ |
| return 0; |
| } |
| |
| /* Restriction 12: If the subquery is the right operand of a left outer |
| ** join, make sure the subquery has no WHERE clause. |
| ** An examples of why this is not allowed: |
| ** |
| ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
| ** |
| ** If we flatten the above, we would get |
| ** |
| ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
| ** |
| ** But the t2.x>0 test will always fail on a NULL row of t2, which |
| ** effectively converts the OUTER JOIN into an INNER JOIN. |
| */ |
| if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 |
| && pSub->pWhere!=0 ){ |
| return 0; |
| } |
| |
| /* If we reach this point, it means flattening is permitted for the |
| ** iFrom-th entry of the FROM clause in the outer query. |
| */ |
| |
| /* Move all of the FROM elements of the subquery into the |
| ** the FROM clause of the outer query. Before doing this, remember |
| ** the cursor number for the original outer query FROM element in |
| ** iParent. The iParent cursor will never be used. Subsequent code |
| ** will scan expressions looking for iParent references and replace |
| ** those references with expressions that resolve to the subquery FROM |
| ** elements we are now copying in. |
| */ |
| iParent = pSubitem->iCursor; |
| { |
| int nSubSrc = pSubSrc->nSrc; |
| int jointype = pSubitem->jointype; |
| |
| sqlite3DeleteTable(0, pSubitem->pTab); |
| sqliteFree(pSubitem->zDatabase); |
| sqliteFree(pSubitem->zName); |
| sqliteFree(pSubitem->zAlias); |
| if( nSubSrc>1 ){ |
| int extra = nSubSrc - 1; |
| for(i=1; i<nSubSrc; i++){ |
| pSrc = sqlite3SrcListAppend(pSrc, 0, 0); |
| } |
| p->pSrc = pSrc; |
| for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ |
| pSrc->a[i] = pSrc->a[i-extra]; |
| } |
| } |
| for(i=0; i<nSubSrc; i++){ |
| pSrc->a[i+iFrom] = pSubSrc->a[i]; |
| memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
| } |
| pSrc->a[iFrom+nSubSrc-1].jointype = jointype; |
| } |
| |
| /* Now begin substituting subquery result set expressions for |
| ** references to the iParent in the outer query. |
| ** |
| ** Example: |
| ** |
| ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
| ** \ \_____________ subquery __________/ / |
| ** \_____________________ outer query ______________________________/ |
| ** |
| ** We look at every expression in the outer query and every place we see |
| ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
| */ |
| pList = p->pEList; |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pExpr; |
| if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ |
| pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); |
| } |
| } |
| substExprList(p->pEList, iParent, pSub->pEList); |
| if( isAgg ){ |
| substExprList(p->pGroupBy, iParent, pSub->pEList); |
| substExpr(p->pHaving, iParent, pSub->pEList); |
| } |
| if( pSub->pOrderBy ){ |
| assert( p->pOrderBy==0 ); |
| p->pOrderBy = pSub->pOrderBy; |
| pSub->pOrderBy = 0; |
| }else if( p->pOrderBy ){ |
| substExprList(p->pOrderBy, iParent, pSub->pEList); |
| } |
| if( pSub->pWhere ){ |
| pWhere = sqlite3ExprDup(pSub->pWhere); |
| }else{ |
| pWhere = 0; |
| } |
| if( subqueryIsAgg ){ |
| assert( p->pHaving==0 ); |
| p->pHaving = p->pWhere; |
| p->pWhere = pWhere; |
| substExpr(p->pHaving, iParent, pSub->pEList); |
| p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); |
| assert( p->pGroupBy==0 ); |
| p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); |
| }else{ |
| substExpr(p->pWhere, iParent, pSub->pEList); |
| p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); |
| } |
| |
| /* The flattened query is distinct if either the inner or the |
| ** outer query is distinct. |
| */ |
| p->isDistinct = p->isDistinct || pSub->isDistinct; |
| |
| /* |
| ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
| ** |
| ** One is tempted to try to add a and b to combine the limits. But this |
| ** does not work if either limit is negative. |
| */ |
| if( pSub->pLimit ){ |
| p->pLimit = pSub->pLimit; |
| pSub->pLimit = 0; |
| } |
| |
| /* Finially, delete what is left of the subquery and return |
| ** success. |
| */ |
| sqlite3SelectDelete(pSub); |
| return 1; |
| } |
| #endif /* SQLITE_OMIT_VIEW */ |
| |
| /* |
| ** Analyze the SELECT statement passed in as an argument to see if it |
| ** is a simple min() or max() query. If it is and this query can be |
| ** satisfied using a single seek to the beginning or end of an index, |
| ** then generate the code for this SELECT and return 1. If this is not a |
| ** simple min() or max() query, then return 0; |
| ** |
| ** A simply min() or max() query looks like this: |
| ** |
| ** SELECT min(a) FROM table; |
| ** SELECT max(a) FROM table; |
| ** |
| ** The query may have only a single table in its FROM argument. There |
| ** can be no GROUP BY or HAVING or WHERE clauses. The result set must |
| ** be the min() or max() of a single column of the table. The column |
| ** in the min() or max() function must be indexed. |
| ** |
| ** The parameters to this routine are the same as for sqlite3Select(). |
| ** See the header comment on that routine for additional information. |
| */ |
| static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ |
| Expr *pExpr; |
| int iCol; |
| Table *pTab; |
| Index *pIdx; |
| int base; |
| Vdbe *v; |
| int seekOp; |
| ExprList *pEList, *pList, eList; |
| struct ExprList_item eListItem; |
| SrcList *pSrc; |
| int brk; |
| int iDb; |
| |
| /* Check to see if this query is a simple min() or max() query. Return |
| ** zero if it is not. |
| */ |
| if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; |
| pSrc = p->pSrc; |
| if( pSrc->nSrc!=1 ) return 0; |
| pEList = p->pEList; |
| if( pEList->nExpr!=1 ) return 0; |
| pExpr = pEList->a[0].pExpr; |
| if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
| pList = pExpr->pList; |
| if( pList==0 || pList->nExpr!=1 ) return 0; |
| if( pExpr->token.n!=3 ) return 0; |
| if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ |
| seekOp = OP_Rewind; |
| }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ |
| seekOp = OP_Last; |
| }else{ |
| return 0; |
| } |
| pExpr = pList->a[0].pExpr; |
| if( pExpr->op!=TK_COLUMN ) return 0; |
| iCol = pExpr->iColumn; |
| pTab = pSrc->a[0].pTab; |
| |
| |
| /* If we get to here, it means the query is of the correct form. |
| ** Check to make sure we have an index and make pIdx point to the |
| ** appropriate index. If the min() or max() is on an INTEGER PRIMARY |
| ** key column, no index is necessary so set pIdx to NULL. If no |
| ** usable index is found, return 0. |
| */ |
| if( iCol<0 ){ |
| pIdx = 0; |
| }else{ |
| CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); |
| for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| assert( pIdx->nColumn>=1 ); |
| if( pIdx->aiColumn[0]==iCol && |
| 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ |
| break; |
| } |
| } |
| if( pIdx==0 ) return 0; |
| } |
| |
| /* Identify column types if we will be using the callback. This |
| ** step is skipped if the output is going to a table or a memory cell. |
| ** The column names have already been generated in the calling function. |
| */ |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return 0; |
| |
| /* If the output is destined for a temporary table, open that table. |
| */ |
| if( eDest==SRT_VirtualTab ){ |
| sqlite3VdbeAddOp(v, OP_OpenVirtual, iParm, 1); |
| } |
| |
| /* Generating code to find the min or the max. Basically all we have |
| ** to do is find the first or the last entry in the chosen index. If |
| ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first |
| ** or last entry in the main table. |
| */ |
| iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| assert( iDb>=0 || pTab->isTransient ); |
| sqlite3CodeVerifySchema(pParse, iDb); |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| base = pSrc->a[0].iCursor; |
| brk = sqlite3VdbeMakeLabel(v); |
| computeLimitRegisters(pParse, p, brk); |
| if( pSrc->a[0].pSelect==0 ){ |
| sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); |
| } |
| if( pIdx==0 ){ |
| sqlite3VdbeAddOp(v, seekOp, base, 0); |
| }else{ |
| /* Even though the cursor used to open the index here is closed |
| ** as soon as a single value has been read from it, allocate it |
| ** using (pParse->nTab++) to prevent the cursor id from being |
| ** reused. This is important for statements of the form |
| ** "INSERT INTO x SELECT max() FROM x". |
| */ |
| int iIdx; |
| KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
| iIdx = pParse->nTab++; |
| assert( pIdx->pSchema==pTab->pSchema ); |
| sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
| sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, |
| (char*)pKey, P3_KEYINFO_HANDOFF); |
| if( seekOp==OP_Rewind ){ |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); |
| seekOp = OP_MoveGt; |
| } |
| sqlite3VdbeAddOp(v, seekOp, iIdx, 0); |
| sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); |
| sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); |
| sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
| } |
| eList.nExpr = 1; |
| memset(&eListItem, 0, sizeof(eListItem)); |
| eList.a = &eListItem; |
| eList.a[0].pExpr = pExpr; |
| selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); |
| sqlite3VdbeResolveLabel(v, brk); |
| sqlite3VdbeAddOp(v, OP_Close, base, 0); |
| |
| return 1; |
| } |
| |
| /* |
| ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return |
| ** the number of errors seen. |
| ** |
| ** An ORDER BY or GROUP BY is a list of expressions. If any expression |
| ** is an integer constant, then that expression is replaced by the |
| ** corresponding entry in the result set. |
| */ |
| static int processOrderGroupBy( |
| NameContext *pNC, /* Name context of the SELECT statement. */ |
| ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ |
| const char *zType /* Either "ORDER" or "GROUP", as appropriate */ |
| ){ |
| int i; |
| ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ |
| Parse *pParse = pNC->pParse; /* The result set of the SELECT */ |
| assert( pEList ); |
| |
| if( pOrderBy==0 ) return 0; |
| for(i=0; i<pOrderBy->nExpr; i++){ |
| int iCol; |
| Expr *pE = pOrderBy->a[i].pExpr; |
| if( sqlite3ExprIsInteger(pE, &iCol) ){ |
| if( iCol>0 && iCol<=pEList->nExpr ){ |
| sqlite3ExprDelete(pE); |
| pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); |
| }else{ |
| sqlite3ErrorMsg(pParse, |
| "%s BY column number %d out of range - should be " |
| "between 1 and %d", zType, iCol, pEList->nExpr); |
| return 1; |
| } |
| } |
| if( sqlite3ExprResolveNames(pNC, pE) ){ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** This routine resolves any names used in the result set of the |
| ** supplied SELECT statement. If the SELECT statement being resolved |
| ** is a sub-select, then pOuterNC is a pointer to the NameContext |
| ** of the parent SELECT. |
| */ |
| int sqlite3SelectResolve( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The SELECT statement being coded. */ |
| NameContext *pOuterNC /* The outer name context. May be NULL. */ |
| ){ |
| ExprList *pEList; /* Result set. */ |
| int i; /* For-loop variable used in multiple places */ |
| NameContext sNC; /* Local name-context */ |
| ExprList *pGroupBy; /* The group by clause */ |
| |
| /* If this routine has run before, return immediately. */ |
| if( p->isResolved ){ |
| assert( !pOuterNC ); |
| return SQLITE_OK; |
| } |
| p->isResolved = 1; |
| |
| /* If there have already been errors, do nothing. */ |
| if( pParse->nErr>0 ){ |
| return SQLITE_ERROR; |
| } |
| |
| /* Prepare the select statement. This call will allocate all cursors |
| ** required to handle the tables and subqueries in the FROM clause. |
| */ |
| if( prepSelectStmt(pParse, p) ){ |
| return SQLITE_ERROR; |
| } |
| |
| /* Resolve the expressions in the LIMIT and OFFSET clauses. These |
| ** are not allowed to refer to any names, so pass an empty NameContext. |
| */ |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pParse = pParse; |
| if( sqlite3ExprResolveNames(&sNC, p->pLimit) || |
| sqlite3ExprResolveNames(&sNC, p->pOffset) ){ |
| return SQLITE_ERROR; |
| } |
| |
| /* Set up the local name-context to pass to ExprResolveNames() to |
| ** resolve the expression-list. |
| */ |
| sNC.allowAgg = 1; |
| sNC.pSrcList = p->pSrc; |
| sNC.pNext = pOuterNC; |
| |
| /* Resolve names in the result set. */ |
| pEList = p->pEList; |
| if( !pEList ) return SQLITE_ERROR; |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *pX = pEList->a[i].pExpr; |
| if( sqlite3ExprResolveNames(&sNC, pX) ){ |
| return SQLITE_ERROR; |
| } |
| } |
| |
| /* If there are no aggregate functions in the result-set, and no GROUP BY |
| ** expression, do not allow aggregates in any of the other expressions. |
| */ |
| assert( !p->isAgg ); |
| pGroupBy = p->pGroupBy; |
| if( pGroupBy || sNC.hasAgg ){ |
| p->isAgg = 1; |
| }else{ |
| sNC.allowAgg = 0; |
| } |
| |
| /* If a HAVING clause is present, then there must be a GROUP BY clause. |
| */ |
| if( p->pHaving && !pGroupBy ){ |
| sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); |
| return SQLITE_ERROR; |
| } |
| |
| /* Add the expression list to the name-context before parsing the |
| ** other expressions in the SELECT statement. This is so that |
| ** expressions in the WHERE clause (etc.) can refer to expressions by |
| ** aliases in the result set. |
| ** |
| ** Minor point: If this is the case, then the expression will be |
| ** re-evaluated for each reference to it. |
| */ |
| sNC.pEList = p->pEList; |
| if( sqlite3ExprResolveNames(&sNC, p->pWhere) || |
| sqlite3ExprResolveNames(&sNC, p->pHaving) || |
| processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || |
| processOrderGroupBy(&sNC, pGroupBy, "GROUP") |
| ){ |
| return SQLITE_ERROR; |
| } |
| |
| /* Make sure the GROUP BY clause does not contain aggregate functions. |
| */ |
| if( pGroupBy ){ |
| struct ExprList_item *pItem; |
| |
| for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ |
| if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ |
| sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " |
| "the GROUP BY clause"); |
| return SQLITE_ERROR; |
| } |
| } |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Reset the aggregate accumulator. |
| ** |
| ** The aggregate accumulator is a set of memory cells that hold |
| ** intermediate results while calculating an aggregate. This |
| ** routine simply stores NULLs in all of those memory cells. |
| */ |
| static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct AggInfo_func *pFunc; |
| if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ |
| return; |
| } |
| for(i=0; i<pAggInfo->nColumn; i++){ |
| sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); |
| } |
| for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
| sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); |
| if( pFunc->iDistinct>=0 ){ |
| Expr *pE = pFunc->pExpr; |
| if( pE->pList==0 || pE->pList->nExpr!=1 ){ |
| sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " |
| "by an expression"); |
| pFunc->iDistinct = -1; |
| }else{ |
| KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); |
| sqlite3VdbeOp3(v, OP_OpenVirtual, pFunc->iDistinct, 0, |
| (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Invoke the OP_AggFinalize opcode for every aggregate function |
| ** in the AggInfo structure. |
| */ |
| static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct AggInfo_func *pF; |
| for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
| ExprList *pList = pF->pExpr->pList; |
| sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, |
| (void*)pF->pFunc, P3_FUNCDEF); |
| } |
| } |
| |
| /* |
| ** Update the accumulator memory cells for an aggregate based on |
| ** the current cursor position. |
| */ |
| static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct AggInfo_func *pF; |
| struct AggInfo_col *pC; |
| |
| pAggInfo->directMode = 1; |
| for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
| int nArg; |
| int addrNext = 0; |
| ExprList *pList = pF->pExpr->pList; |
| if( pList ){ |
| nArg = pList->nExpr; |
| sqlite3ExprCodeExprList(pParse, pList); |
| }else{ |
| nArg = 0; |
| } |
| if( pF->iDistinct>=0 ){ |
| addrNext = sqlite3VdbeMakeLabel(v); |
| assert( nArg==1 ); |
| codeDistinct(v, pF->iDistinct, addrNext, 1); |
| } |
| if( pF->pFunc->needCollSeq ){ |
| CollSeq *pColl = 0; |
| struct ExprList_item *pItem; |
| int j; |
| assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ |
| for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
| pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
| } |
| if( !pColl ){ |
| pColl = pParse->db->pDfltColl; |
| } |
| sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
| } |
| sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); |
| if( addrNext ){ |
| sqlite3VdbeResolveLabel(v, addrNext); |
| } |
| } |
| for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
| sqlite3ExprCode(pParse, pC->pExpr); |
| sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); |
| } |
| pAggInfo->directMode = 0; |
| } |
| |
| |
| /* |
| ** Generate code for the given SELECT statement. |
| ** |
| ** The results are distributed in various ways depending on the |
| ** value of eDest and iParm. |
| ** |
| ** eDest Value Result |
| ** ------------ ------------------------------------------- |
| ** SRT_Callback Invoke the callback for each row of the result. |
| ** |
| ** SRT_Mem Store first result in memory cell iParm |
| ** |
| ** SRT_Set Store results as keys of table iParm. |
| ** |
| ** SRT_Union Store results as a key in a temporary table iParm |
| ** |
| ** SRT_Except Remove results from the temporary table iParm. |
| ** |
| ** SRT_Table Store results in temporary table iParm |
| ** |
| ** The table above is incomplete. Additional eDist value have be added |
| ** since this comment was written. See the selectInnerLoop() function for |
| ** a complete listing of the allowed values of eDest and their meanings. |
| ** |
| ** This routine returns the number of errors. If any errors are |
| ** encountered, then an appropriate error message is left in |
| ** pParse->zErrMsg. |
| ** |
| ** This routine does NOT free the Select structure passed in. The |
| ** calling function needs to do that. |
| ** |
| ** The pParent, parentTab, and *pParentAgg fields are filled in if this |
| ** SELECT is a subquery. This routine may try to combine this SELECT |
| ** with its parent to form a single flat query. In so doing, it might |
| ** change the parent query from a non-aggregate to an aggregate query. |
| ** For that reason, the pParentAgg flag is passed as a pointer, so it |
| ** can be changed. |
| ** |
| ** Example 1: The meaning of the pParent parameter. |
| ** |
| ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; |
| ** \ \_______ subquery _______/ / |
| ** \ / |
| ** \____________________ outer query ___________________/ |
| ** |
| ** This routine is called for the outer query first. For that call, |
| ** pParent will be NULL. During the processing of the outer query, this |
| ** routine is called recursively to handle the subquery. For the recursive |
| ** call, pParent will point to the outer query. Because the subquery is |
| ** the second element in a three-way join, the parentTab parameter will |
| ** be 1 (the 2nd value of a 0-indexed array.) |
| */ |
| int sqlite3Select( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The SELECT statement being coded. */ |
| int eDest, /* How to dispose of the results */ |
| int iParm, /* A parameter used by the eDest disposal method */ |
| Select *pParent, /* Another SELECT for which this is a sub-query */ |
| int parentTab, /* Index in pParent->pSrc of this query */ |
| int *pParentAgg, /* True if pParent uses aggregate functions */ |
| char *aff /* If eDest is SRT_Union, the affinity string */ |
| ){ |
| int i, j; /* Loop counters */ |
| WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
| Vdbe *v; /* The virtual machine under construction */ |
| int isAgg; /* True for select lists like "count(*)" */ |
| ExprList *pEList; /* List of columns to extract. */ |
| SrcList *pTabList; /* List of tables to select from */ |
| Expr *pWhere; /* The WHERE clause. May be NULL */ |
| ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ |
| ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
| Expr *pHaving; /* The HAVING clause. May be NULL */ |
| int isDistinct; /* True if the DISTINCT keyword is present */ |
| int distinct; /* Table to use for the distinct set */ |
| int rc = 1; /* Value to return from this function */ |
| int addrSortIndex; /* Address of an OP_OpenVirtual instruction */ |
| AggInfo sAggInfo; /* Information used by aggregate queries */ |
| int iEnd; /* Address of the end of the query */ |
| |
| if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ |
| return 1; |
| } |
| if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
| memset(&sAggInfo, 0, sizeof(sAggInfo)); |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* If there is are a sequence of queries, do the earlier ones first. |
| */ |
| if( p->pPrior ){ |
| if( p->pRightmost==0 ){ |
| Select *pLoop; |
| for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
| pLoop->pRightmost = p; |
| } |
| } |
| return multiSelect(pParse, p, eDest, iParm, aff); |
| } |
| #endif |
| |
| pOrderBy = p->pOrderBy; |
| if( IgnorableOrderby(eDest) ){ |
| p->pOrderBy = 0; |
| } |
| if( sqlite3SelectResolve(pParse, p, 0) ){ |
| goto select_end; |
| } |
| p->pOrderBy = pOrderBy; |
| |
| /* Make local copies of the parameters for this query. |
| */ |
| pTabList = p->pSrc; |
| pWhere = p->pWhere; |
| pGroupBy = p->pGroupBy; |
| pHaving = p->pHaving; |
| isAgg = p->isAgg; |
| isDistinct = p->isDistinct; |
| pEList = p->pEList; |
| if( pEList==0 ) goto select_end; |
| |
| /* |
| ** Do not even attempt to generate any code if we have already seen |
| ** errors before this routine starts. |
| */ |
| if( pParse->nErr>0 ) goto select_end; |
| |
| /* If writing to memory or generating a set |
| ** only a single column may be output. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ |
| sqlite3ErrorMsg(pParse, "only a single result allowed for " |
| "a SELECT that is part of an expression"); |
| goto select_end; |
| } |
| #endif |
| |
| /* ORDER BY is ignored for some destinations. |
| */ |
| if( IgnorableOrderby(eDest) ){ |
| pOrderBy = 0; |
| } |
| |
| /* Begin generating code. |
| */ |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) goto select_end; |
| |
| /* Generate code for all sub-queries in the FROM clause |
| */ |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| for(i=0; i<pTabList->nSrc; i++){ |
| const char *zSavedAuthContext = 0; |
| int needRestoreContext; |
| struct SrcList_item *pItem = &pTabList->a[i]; |
| |
| if( pItem->pSelect==0 || pItem->isPopulated ) continue; |
| if( pItem->zName!=0 ){ |
| zSavedAuthContext = pParse->zAuthContext; |
| pParse->zAuthContext = pItem->zName; |
| needRestoreContext = 1; |
| }else{ |
| needRestoreContext = 0; |
| } |
| sqlite3Select(pParse, pItem->pSelect, SRT_VirtualTab, |
| pItem->iCursor, p, i, &isAgg, 0); |
| if( needRestoreContext ){ |
| pParse->zAuthContext = zSavedAuthContext; |
| } |
| pTabList = p->pSrc; |
| pWhere = p->pWhere; |
| if( !IgnorableOrderby(eDest) ){ |
| pOrderBy = p->pOrderBy; |
| } |
| pGroupBy = p->pGroupBy; |
| pHaving = p->pHaving; |
| isDistinct = p->isDistinct; |
| } |
| #endif |
| |
| /* Check for the special case of a min() or max() function by itself |
| ** in the result set. |
| */ |
| if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ |
| rc = 0; |
| goto select_end; |
| } |
| |
| /* Check to see if this is a subquery that can be "flattened" into its parent. |
| ** If flattening is a possiblity, do so and return immediately. |
| */ |
| #ifndef SQLITE_OMIT_VIEW |
| if( pParent && pParentAgg && |
| flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ |
| if( isAgg ) *pParentAgg = 1; |
| goto select_end; |
| } |
| #endif |
| |
| /* If there is an ORDER BY clause, resolve any collation sequences |
| ** names that have been explicitly specified and create a sorting index. |
| ** |
| ** This sorting index might end up being unused if the data can be |
| ** extracted in pre-sorted order. If that is the case, then the |
| ** OP_OpenVirtual instruction will be changed to an OP_Noop once |
| ** we figure out that the sorting index is not needed. The addrSortIndex |
| ** variable is used to facilitate that change. |
| */ |
| if( pOrderBy ){ |
| struct ExprList_item *pTerm; |
| KeyInfo *pKeyInfo; |
| for(i=0, pTerm=pOrderBy->a; i<pOrderBy->nExpr; i++, pTerm++){ |
| if( pTerm->zName ){ |
| pTerm->pExpr->pColl = sqlite3LocateCollSeq(pParse, pTerm->zName, -1); |
| } |
| } |
| if( pParse->nErr ){ |
| goto select_end; |
| } |
| pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); |
| pOrderBy->iECursor = pParse->nTab++; |
| p->addrOpenVirt[2] = addrSortIndex = |
| sqlite3VdbeOp3(v, OP_OpenVirtual, pOrderBy->iECursor, pOrderBy->nExpr+2, |
| (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
| }else{ |
| addrSortIndex = -1; |
| } |
| |
| /* If the output is destined for a temporary table, open that table. |
| */ |
| if( eDest==SRT_VirtualTab ){ |
| sqlite3VdbeAddOp(v, OP_OpenVirtual, iParm, pEList->nExpr); |
| } |
| |
| /* Set the limiter. |
| */ |
| iEnd = sqlite3VdbeMakeLabel(v); |
| computeLimitRegisters(pParse, p, iEnd); |
| |
| /* Open a virtual index to use for the distinct set. |
| */ |
| if( isDistinct ){ |
| KeyInfo *pKeyInfo; |
| distinct = pParse->nTab++; |
| pKeyInfo = keyInfoFromExprList(pParse, p->pEList); |
| sqlite3VdbeOp3(v, OP_OpenVirtual, distinct, 0, |
| (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
| }else{ |
| distinct = -1; |
| } |
| |
| /* Aggregate and non-aggregate queries are handled differently */ |
| if( !isAgg && pGroupBy==0 ){ |
| /* This case is for non-aggregate queries |
| ** Begin the database scan |
| */ |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); |
| if( pWInfo==0 ) goto select_end; |
| |
| /* If sorting index that was created by a prior OP_OpenVirtual |
| ** instruction ended up not being needed, then change the OP_OpenVirtual |
| ** into an OP_Noop. |
| */ |
| if( addrSortIndex>=0 && pOrderBy==0 ){ |
| sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); |
| p->addrOpenVirt[2] = -1; |
| } |
| |
| /* Use the standard inner loop |
| */ |
| if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, |
| iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ |
| goto select_end; |
| } |
| |
| /* End the database scan loop. |
| */ |
| sqlite3WhereEnd(pWInfo); |
| }else{ |
| /* This is the processing for aggregate queries */ |
| NameContext sNC; /* Name context for processing aggregate information */ |
| int iAMem; /* First Mem address for storing current GROUP BY */ |
| int iBMem; /* First Mem address for previous GROUP BY */ |
| int iUseFlag; /* Mem address holding flag indicating that at least |
| ** one row of the input to the aggregator has been |
| ** processed */ |
| int iAbortFlag; /* Mem address which causes query abort if positive */ |
| int groupBySort; /* Rows come from source in GROUP BY order */ |
| |
| |
| /* The following variables hold addresses or labels for parts of the |
| ** virtual machine program we are putting together */ |
| int addrOutputRow; /* Start of subroutine that outputs a result row */ |
| int addrSetAbort; /* Set the abort flag and return */ |
| int addrInitializeLoop; /* Start of code that initializes the input loop */ |
| int addrTopOfLoop; /* Top of the input loop */ |
| int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ |
| int addrProcessRow; /* Code to process a single input row */ |
| int addrEnd; /* End of all processing */ |
| int addrSortingIdx; /* The OP_OpenVirtual for the sorting index */ |
| int addrReset; /* Subroutine for resetting the accumulator */ |
| |
| addrEnd = sqlite3VdbeMakeLabel(v); |
| |
| /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
| ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
| ** SELECT statement. |
| */ |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pParse = pParse; |
| sNC.pSrcList = pTabList; |
| sNC.pAggInfo = &sAggInfo; |
| sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; |
| sAggInfo.pGroupBy = pGroupBy; |
| if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ |
| goto select_end; |
| } |
| if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ |
| goto select_end; |
| } |
| if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ |
| goto select_end; |
| } |
| sAggInfo.nAccumulator = sAggInfo.nColumn; |
| for(i=0; i<sAggInfo.nFunc; i++){ |
| if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ |
| goto select_end; |
| } |
| } |
| if( sqlite3MallocFailed() ) goto select_end; |
| |
| /* Processing for aggregates with GROUP BY is very different and |
| ** much more complex tha aggregates without a GROUP BY. |
| */ |
| if( pGroupBy ){ |
| KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
| |
| /* Create labels that we will be needing |
| */ |
| |
| addrInitializeLoop = sqlite3VdbeMakeLabel(v); |
| addrGroupByChange = sqlite3VdbeMakeLabel(v); |
| addrProcessRow = sqlite3VdbeMakeLabel(v); |
| |
| /* If there is a GROUP BY clause we might need a sorting index to |
| ** implement it. Allocate that sorting index now. If it turns out |
| ** that we do not need it after all, the OpenVirtual instruction |
| ** will be converted into a Noop. |
| */ |
| sAggInfo.sortingIdx = pParse->nTab++; |
| pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); |
| addrSortingIdx = |
| sqlite3VdbeOp3(v, OP_OpenVirtual, sAggInfo.sortingIdx, |
| sAggInfo.nSortingColumn, |
| (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
| |
| /* Initialize memory locations used by GROUP BY aggregate processing |
| */ |
| iUseFlag = pParse->nMem++; |
| iAbortFlag = pParse->nMem++; |
| iAMem = pParse->nMem; |
| pParse->nMem += pGroupBy->nExpr; |
| iBMem = pParse->nMem; |
| pParse->nMem += pGroupBy->nExpr; |
| sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); |
| VdbeComment((v, "# clear abort flag")); |
| sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); |
| VdbeComment((v, "# indicate accumulator empty")); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); |
| |
| /* Generate a subroutine that outputs a single row of the result |
| ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
| ** is less than or equal to zero, the subroutine is a no-op. If |
| ** the processing calls for the query to abort, this subroutine |
| ** increments the iAbortFlag memory location before returning in |
| ** order to signal the caller to abort. |
| */ |
| addrSetAbort = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); |
| VdbeComment((v, "# set abort flag")); |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| addrOutputRow = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); |
| VdbeComment((v, "# Groupby result generator entry point")); |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| finalizeAggFunctions(pParse, &sAggInfo); |
| if( pHaving ){ |
| sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); |
| } |
| rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, |
| distinct, eDest, iParm, |
| addrOutputRow+1, addrSetAbort, aff); |
| if( rc ){ |
| goto select_end; |
| } |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| VdbeComment((v, "# end groupby result generator")); |
| |
| /* Generate a subroutine that will reset the group-by accumulator |
| */ |
| addrReset = sqlite3VdbeCurrentAddr(v); |
| resetAccumulator(pParse, &sAggInfo); |
| sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
| |
| /* Begin a loop that will extract all source rows in GROUP BY order. |
| ** This might involve two separate loops with an OP_Sort in between, or |
| ** it might be a single loop that uses an index to extract information |
| ** in the right order to begin with. |
| */ |
| sqlite3VdbeResolveLabel(v, addrInitializeLoop); |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); |
| if( pWInfo==0 ) goto select_end; |
| if( pGroupBy==0 ){ |
| /* The optimizer is able to deliver rows in group by order so |
| ** we do not have to sort. The OP_OpenVirtual table will be |
| ** cancelled later because we still need to use the pKeyInfo |
| */ |
| pGroupBy = p->pGroupBy; |
| groupBySort = 0; |
| }else{ |
| /* Rows are coming out in undetermined order. We have to push |
| ** each row into a sorting index, terminate the first loop, |
| ** then loop over the sorting index in order to get the output |
| ** in sorted order |
| */ |
| groupBySort = 1; |
| sqlite3ExprCodeExprList(pParse, pGroupBy); |
| sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); |
| j = pGroupBy->nExpr+1; |
| for(i=0; i<sAggInfo.nColumn; i++){ |
| struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
| if( pCol->iSorterColumn<j ) continue; |
| if( pCol->iColumn<0 ){ |
| sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn); |
| } |
| j++; |
| } |
| sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); |
| sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); |
| sqlite3WhereEnd(pWInfo); |
| sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); |
| VdbeComment((v, "# GROUP BY sort")); |
| sAggInfo.useSortingIdx = 1; |
| } |
| |
| /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
| ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
| ** Then compare the current GROUP BY terms against the GROUP BY terms |
| ** from the previous row currently stored in a0, a1, a2... |
| */ |
| addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
| for(j=0; j<pGroupBy->nExpr; j++){ |
| if( groupBySort ){ |
| sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); |
| }else{ |
| sAggInfo.directMode = 1; |
| sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); |
| } |
| sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); |
| } |
| for(j=pGroupBy->nExpr-1; j>=0; j--){ |
| if( j<pGroupBy->nExpr-1 ){ |
| sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); |
| } |
| sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); |
| if( j==0 ){ |
| sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); |
| } |
| sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); |
| } |
| |
| /* Generate code that runs whenever the GROUP BY changes. |
| ** Change in the GROUP BY are detected by the previous code |
| ** block. If there were no changes, this block is skipped. |
| ** |
| ** This code copies current group by terms in b0,b1,b2,... |
| ** over to a0,a1,a2. It then calls the output subroutine |
| ** and resets the aggregate accumulator registers in preparation |
| ** for the next GROUP BY batch. |
| */ |
| sqlite3VdbeResolveLabel(v, addrGroupByChange); |
| for(j=0; j<pGroupBy->nExpr; j++){ |
| sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); |
| } |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
| VdbeComment((v, "# output one row")); |
| sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); |
| VdbeComment((v, "# check abort flag")); |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
| VdbeComment((v, "# reset accumulator")); |
| |
| /* Update the aggregate accumulators based on the content of |
| ** the current row |
| */ |
| sqlite3VdbeResolveLabel(v, addrProcessRow); |
| updateAccumulator(pParse, &sAggInfo); |
| sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); |
| VdbeComment((v, "# indicate data in accumulator")); |
| |
| /* End of the loop |
| */ |
| if( groupBySort ){ |
| sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); |
| }else{ |
| sqlite3WhereEnd(pWInfo); |
| sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); |
| } |
| |
| /* Output the final row of result |
| */ |
| sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
| VdbeComment((v, "# output final row")); |
| |
| } /* endif pGroupBy */ |
| else { |
| /* This case runs if the aggregate has no GROUP BY clause. The |
| ** processing is much simpler since there is only a single row |
| ** of output. |
| */ |
| resetAccumulator(pParse, &sAggInfo); |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); |
| if( pWInfo==0 ) goto select_end; |
| updateAccumulator(pParse, &sAggInfo); |
| sqlite3WhereEnd(pWInfo); |
| finalizeAggFunctions(pParse, &sAggInfo); |
| pOrderBy = 0; |
| if( pHaving ){ |
| sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); |
| } |
| selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, |
| eDest, iParm, addrEnd, addrEnd, aff); |
| } |
| sqlite3VdbeResolveLabel(v, addrEnd); |
| |
| } /* endif aggregate query */ |
| |
| /* If there is an ORDER BY clause, then we need to sort the results |
| ** and send them to the callback one by one. |
| */ |
| if( pOrderBy ){ |
| generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* If this was a subquery, we have now converted the subquery into a |
| ** temporary table. So set the SrcList_item.isPopulated flag to prevent |
| ** this subquery from being evaluated again and to force the use of |
| ** the temporary table. |
| */ |
| if( pParent ){ |
| assert( pParent->pSrc->nSrc>parentTab ); |
| assert( pParent->pSrc->a[parentTab].pSelect==p ); |
| pParent->pSrc->a[parentTab].isPopulated = 1; |
| } |
| #endif |
| |
| /* Jump here to skip this query |
| */ |
| sqlite3VdbeResolveLabel(v, iEnd); |
| |
| /* The SELECT was successfully coded. Set the return code to 0 |
| ** to indicate no errors. |
| */ |
| rc = 0; |
| |
| /* Control jumps to here if an error is encountered above, or upon |
| ** successful coding of the SELECT. |
| */ |
| select_end: |
| |
| /* Identify column names if we will be using them in a callback. This |
| ** step is skipped if the output is going to some other destination. |
| */ |
| if( rc==SQLITE_OK && eDest==SRT_Callback ){ |
| generateColumnNames(pParse, pTabList, pEList); |
| } |
| |
| sqliteFree(sAggInfo.aCol); |
| sqliteFree(sAggInfo.aFunc); |
| return rc; |
| } |