blob: 85004b734325e857f68388b6bb3d0a1404b4a3c8 [file] [log] [blame] [edit]
//=== X86NaClRewritePAss.cpp - Rewrite instructions for NaCl SFI --*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that ensures stores and loads and stack/frame
// pointer addresses are within the NaCl sandbox (for x86-64).
// It also ensures that indirect control flow follows NaCl requirments.
//
// The other major portion of rewriting for NaCl is done in X86InstrNaCl.cpp,
// which is responsible for expanding the NaCl-specific operations introduced
// here and also the intrinsic functions to support setjmp, etc.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-sandboxing"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86NaClDecls.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
cl::opt<bool> FlagRestrictR15("sfi-restrict-r15",
cl::desc("Restrict use of %r15. This flag can"
" be turned off for the zero-based"
" sandbox model."),
cl::init(true));
namespace {
class X86NaClRewritePass : public MachineFunctionPass {
public:
static char ID;
X86NaClRewritePass() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "NaCl Rewrites";
}
private:
const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const X86Subtarget *Subtarget;
bool Is64Bit;
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
void TraceLog(const char *func,
const MachineBasicBlock &MBB,
const MachineBasicBlock::iterator MBBI) const;
bool ApplyRewrites(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool ApplyStackSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool ApplyMemorySFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool ApplyFrameSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool ApplyControlSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
bool AlignJumpTableTargets(MachineFunction &MF);
};
char X86NaClRewritePass::ID = 0;
}
static void DumpInstructionVerbose(const MachineInstr &MI) {
DEBUG({
dbgs() << MI;
dbgs() << MI.getNumOperands() << " operands:" << "\n";
for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
const MachineOperand& op = MI.getOperand(i);
dbgs() << " " << i << "(" << (unsigned)op.getType() << "):" << op
<< "\n";
}
dbgs() << "\n";
});
}
static bool IsPushPop(MachineInstr &MI) {
const unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
return false;
case X86::PUSH64r:
case X86::POP64r:
return true;
}
}
static bool IsStore(MachineInstr &MI) {
return MI.mayStore();
}
static bool IsLoad(MachineInstr &MI) {
return MI.mayLoad();
}
static bool IsFrameChange(MachineInstr &MI, const TargetRegisterInfo *TRI) {
return MI.modifiesRegister(X86::EBP, TRI);
}
static bool IsStackChange(MachineInstr &MI, const TargetRegisterInfo *TRI) {
return MI.modifiesRegister(X86::ESP, TRI);
}
static bool HasControlFlow(const MachineInstr &MI) {
return MI.getDesc().isBranch() ||
MI.getDesc().isCall() ||
MI.getDesc().isReturn() ||
MI.getDesc().isTerminator() ||
MI.getDesc().isBarrier();
}
static bool IsDirectBranch(const MachineInstr &MI) {
return MI.getDesc().isBranch() &&
!MI.getDesc().isIndirectBranch();
}
static bool IsRegAbsolute(unsigned Reg) {
const bool RestrictR15 = FlagRestrictR15;
assert(FlagUseZeroBasedSandbox || RestrictR15);
return (Reg == X86::RSP || Reg == X86::RBP ||
(Reg == X86::R15 && RestrictR15));
}
static bool FindMemoryOperand(const MachineInstr &MI,
SmallVectorImpl<unsigned>* indices) {
int NumFound = 0;
for (unsigned i = 0; i < MI.getNumOperands(); ) {
if (isMem(&MI, i)) {
NumFound++;
indices->push_back(i);
i += X86::AddrNumOperands;
} else {
i++;
}
}
// Intrinsics and other functions can have mayLoad and mayStore to reflect
// the side effects of those functions. This function is used to find
// explicit memory references in the instruction, of which there are none.
if (NumFound == 0)
return false;
return true;
}
static unsigned PromoteRegTo64(unsigned RegIn) {
if (RegIn == 0)
return 0;
unsigned RegOut = getX86SubSuperRegister(RegIn, MVT::i64, false);
assert(RegOut != 0);
return RegOut;
}
static unsigned DemoteRegTo32(unsigned RegIn) {
if (RegIn == 0)
return 0;
unsigned RegOut = getX86SubSuperRegister(RegIn, MVT::i32, false);
assert(RegOut != 0);
return RegOut;
}
//
// True if this MI restores RSP from RBP with a slight adjustment offset.
//
static bool MatchesSPAdj(const MachineInstr &MI) {
assert (MI.getOpcode() == X86::LEA64r && "Call to MatchesSPAdj w/ non LEA");
const MachineOperand &DestReg = MI.getOperand(0);
const MachineOperand &BaseReg = MI.getOperand(1);
const MachineOperand &Scale = MI.getOperand(2);
const MachineOperand &IndexReg = MI.getOperand(3);
const MachineOperand &Offset = MI.getOperand(4);
return (DestReg.isReg() && DestReg.getReg() == X86::RSP &&
BaseReg.isReg() && BaseReg.getReg() == X86::RBP &&
Scale.getImm() == 1 &&
IndexReg.isReg() && IndexReg.getReg() == 0 &&
Offset.isImm());
}
void
X86NaClRewritePass::TraceLog(const char *func,
const MachineBasicBlock &MBB,
const MachineBasicBlock::iterator MBBI) const {
DEBUG(dbgs() << "@" << func
<< "(" << MBB.getName() << ", " << (*MBBI) << ")\n");
}
bool X86NaClRewritePass::ApplyStackSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
TraceLog("ApplyStackSFI", MBB, MBBI);
assert(Is64Bit);
MachineInstr &MI = *MBBI;
if (!IsStackChange(MI, TRI))
return false;
if (IsPushPop(MI))
return false;
if (MI.getDesc().isCall())
return false;
unsigned Opc = MI.getOpcode();
DebugLoc DL = MI.getDebugLoc();
unsigned DestReg = MI.getOperand(0).getReg();
assert(DestReg == X86::ESP || DestReg == X86::RSP);
unsigned NewOpc = 0;
switch (Opc) {
case X86::ADD64ri8 : NewOpc = X86::NACL_ASPi8; break;
case X86::ADD64ri32: NewOpc = X86::NACL_ASPi32; break;
case X86::SUB64ri8 : NewOpc = X86::NACL_SSPi8; break;
case X86::SUB64ri32: NewOpc = X86::NACL_SSPi32; break;
case X86::AND64ri8 : NewOpc = X86::NACL_ANDSPi8; break;
case X86::AND64ri32: NewOpc = X86::NACL_ANDSPi32; break;
}
if (NewOpc) {
BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
.addImm(MI.getOperand(2).getImm())
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
MI.eraseFromParent();
return true;
}
// Promote "MOV ESP, EBP" to a 64-bit move
if (Opc == X86::MOV32rr && MI.getOperand(1).getReg() == X86::EBP) {
MI.getOperand(0).setReg(X86::RSP);
MI.getOperand(1).setReg(X86::RBP);
MI.setDesc(TII->get(X86::MOV64rr));
Opc = X86::MOV64rr;
}
// "MOV RBP, RSP" is already safe
if (Opc == X86::MOV64rr && MI.getOperand(1).getReg() == X86::RBP) {
return true;
}
// Promote 32-bit lea to 64-bit lea (does this ever happen?)
assert(Opc != X86::LEA32r && "Invalid opcode in 64-bit mode!");
if (Opc == X86::LEA64_32r) {
unsigned DestReg = MI.getOperand(0).getReg();
unsigned BaseReg = MI.getOperand(1).getReg();
unsigned Scale = MI.getOperand(2).getImm();
unsigned IndexReg = MI.getOperand(3).getReg();
assert(DestReg == X86::ESP);
assert(Scale == 1);
assert(BaseReg == X86::EBP);
assert(IndexReg == 0);
MI.getOperand(0).setReg(X86::RSP);
MI.getOperand(1).setReg(X86::RBP);
MI.setDesc(TII->get(X86::LEA64r));
Opc = X86::LEA64r;
}
if (Opc == X86::LEA64r && MatchesSPAdj(MI)) {
const MachineOperand &Offset = MI.getOperand(4);
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_SPADJi32))
.addImm(Offset.getImm())
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
MI.eraseFromParent();
return true;
}
if (Opc == X86::MOV32rr || Opc == X86::MOV64rr) {
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_RESTSPr))
.addReg(DemoteRegTo32(MI.getOperand(1).getReg()))
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
MI.eraseFromParent();
return true;
}
if (Opc == X86::MOV32rm) {
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_RESTSPm))
.addOperand(MI.getOperand(1)) // Base
.addOperand(MI.getOperand(2)) // Scale
.addOperand(MI.getOperand(3)) // Index
.addOperand(MI.getOperand(4)) // Offset
.addOperand(MI.getOperand(5)) // Segment
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
MI.eraseFromParent();
return true;
}
DEBUG(DumpInstructionVerbose(MI));
llvm_unreachable("Unhandled Stack SFI");
}
bool X86NaClRewritePass::ApplyFrameSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
TraceLog("ApplyFrameSFI", MBB, MBBI);
assert(Is64Bit);
MachineInstr &MI = *MBBI;
if (!IsFrameChange(MI, TRI))
return false;
unsigned Opc = MI.getOpcode();
DebugLoc DL = MI.getDebugLoc();
// Handle moves to RBP
if (Opc == X86::MOV64rr) {
assert(MI.getOperand(0).getReg() == X86::RBP);
unsigned SrcReg = MI.getOperand(1).getReg();
// MOV RBP, RSP is already safe
if (SrcReg == X86::RSP)
return false;
// Rewrite: mov %rbp, %rX
// To: naclrestbp %eX, %rZP
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_RESTBPr))
.addReg(DemoteRegTo32(SrcReg))
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15); // rZP
MI.eraseFromParent();
return true;
}
// Handle memory moves to RBP
if (Opc == X86::MOV64rm) {
assert(MI.getOperand(0).getReg() == X86::RBP);
// Zero-based sandbox model uses address clipping
if (FlagUseZeroBasedSandbox)
return false;
// Rewrite: mov %rbp, (...)
// To: naclrestbp (...), %rZP
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_RESTBPm))
.addOperand(MI.getOperand(1)) // Base
.addOperand(MI.getOperand(2)) // Scale
.addOperand(MI.getOperand(3)) // Index
.addOperand(MI.getOperand(4)) // Offset
.addOperand(MI.getOperand(5)) // Segment
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15); // rZP
MI.eraseFromParent();
return true;
}
// Popping onto RBP
// Rewrite to:
// naclrestbp (%rsp), %rZP
// naclasp $8, %rZP
//
// TODO(pdox): Consider rewriting to this instead:
// .bundle_lock
// pop %rbp
// mov %ebp,%ebp
// add %rZP, %rbp
// .bundle_unlock
if (Opc == X86::POP64r) {
assert(MI.getOperand(0).getReg() == X86::RBP);
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_RESTBPm))
.addReg(X86::RSP) // Base
.addImm(1) // Scale
.addReg(0) // Index
.addImm(0) // Offset
.addReg(0) // Segment
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15); // rZP
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_ASPi8))
.addImm(8)
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
MI.eraseFromParent();
return true;
}
DEBUG(DumpInstructionVerbose(MI));
llvm_unreachable("Unhandled Frame SFI");
}
bool X86NaClRewritePass::ApplyControlSFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
const bool HideSandboxBase = (FlagHideSandboxBase &&
Is64Bit && !FlagUseZeroBasedSandbox);
TraceLog("ApplyControlSFI", MBB, MBBI);
MachineInstr &MI = *MBBI;
if (!HasControlFlow(MI))
return false;
// Direct branches are OK
if (IsDirectBranch(MI))
return false;
DebugLoc DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
// Rewrite indirect jump/call instructions
unsigned NewOpc = 0;
switch (Opc) {
// 32-bit
case X86::JMP32r : NewOpc = X86::NACL_JMP32r; break;
case X86::TAILJMPr : NewOpc = X86::NACL_JMP32r; break;
case X86::CALL32r : NewOpc = X86::NACL_CALL32r; break;
// 64-bit
case X86::NACL_CG_JMP64r : NewOpc = X86::NACL_JMP64r; break;
case X86::CALL64r : NewOpc = X86::NACL_CALL64r; break;
case X86::TAILJMPr64 : NewOpc = X86::NACL_JMP64r; break;
}
if (NewOpc) {
unsigned TargetReg = MI.getOperand(0).getReg();
if (Is64Bit) {
// CALL64r, etc. take a 64-bit register as a target. However, NaCl gas
// expects naclcall/nacljmp pseudos to have 32-bit regs as targets
// so NACL_CALL64r and NACL_JMP64r stick with that as well.
// Demote any 64-bit register to 32-bit to match the expectations.
TargetReg = DemoteRegTo32(TargetReg);
}
MachineInstrBuilder NewMI =
BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
.addReg(TargetReg);
if (Is64Bit) {
NewMI.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
}
MI.eraseFromParent();
return true;
}
// EH_RETURN has a single argment which is not actually used directly.
// The argument gives the location where to reposition the stack pointer
// before returning. EmitPrologue takes care of that repositioning.
// So EH_RETURN just ultimately emits a plain "ret".
// RETI returns and pops some number of bytes from the stack.
if (Opc == X86::RETL || Opc == X86::RETQ ||
Opc == X86::EH_RETURN || Opc == X86::EH_RETURN64 ||
Opc == X86::RETIL || Opc == X86::RETIQ) {
// To maintain compatibility with nacl-as, for now we don't emit naclret.
// MI.setDesc(TII->get(Is64Bit ? X86::NACL_RET64 : X86::NACL_RET32));
//
// For NaCl64 returns, follow the convention of using r11 to hold
// the target of an indirect jump to avoid potentially leaking the
// sandbox base address.
unsigned RegTarget;
if (Is64Bit) {
RegTarget = (HideSandboxBase ? X86::R11 : X86::RCX);
BuildMI(MBB, MBBI, DL, TII->get(X86::POP64r), RegTarget);
if (Opc == X86::RETIL || Opc == X86::RETIQ) {
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_ASPi32))
.addOperand(MI.getOperand(0))
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
}
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_JMP64r))
.addReg(getX86SubSuperRegister(RegTarget, MVT::i32, false))
.addReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
} else {
RegTarget = X86::ECX;
BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r), RegTarget);
if (Opc == X86::RETIL || Opc == X86::RETIQ) {
BuildMI(MBB, MBBI, DL, TII->get(X86::ADD32ri), X86::ESP)
.addReg(X86::ESP)
.addOperand(MI.getOperand(0));
}
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_JMP32r))
.addReg(RegTarget);
}
MI.eraseFromParent();
return true;
}
// Traps are OK (but are considered to have control flow
// being a terminator like RET).
if (Opc == X86::TRAP)
return false;
DEBUG(DumpInstructionVerbose(MI));
llvm_unreachable("Unhandled Control SFI");
}
//
// Sandboxes loads and stores (64-bit only)
//
bool X86NaClRewritePass::ApplyMemorySFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
TraceLog("ApplyMemorySFI", MBB, MBBI);
assert(Is64Bit);
MachineInstr &MI = *MBBI;
if (!IsLoad(MI) && !IsStore(MI))
return false;
if (IsPushPop(MI))
return false;
SmallVector<unsigned, 2> MemOps;
if (!FindMemoryOperand(MI, &MemOps))
return false;
bool Modified = false;
for (unsigned MemOp : MemOps) {
MachineOperand &BaseReg = MI.getOperand(MemOp + 0);
MachineOperand &Scale = MI.getOperand(MemOp + 1);
MachineOperand &IndexReg = MI.getOperand(MemOp + 2);
//MachineOperand &Disp = MI.getOperand(MemOp + 3);
MachineOperand &SegmentReg = MI.getOperand(MemOp + 4);
// RIP-relative addressing is safe.
if (BaseReg.getReg() == X86::RIP)
continue;
// Make sure the base and index are 64-bit registers.
IndexReg.setReg(PromoteRegTo64(IndexReg.getReg()));
BaseReg.setReg(PromoteRegTo64(BaseReg.getReg()));
assert(IndexReg.getSubReg() == 0);
assert(BaseReg.getSubReg() == 0);
bool AbsoluteBase = IsRegAbsolute(BaseReg.getReg());
bool AbsoluteIndex = IsRegAbsolute(IndexReg.getReg());
unsigned AddrReg = 0;
if (AbsoluteBase && AbsoluteIndex) {
llvm_unreachable("Unexpected absolute register pair");
} else if (AbsoluteBase) {
AddrReg = IndexReg.getReg();
} else if (AbsoluteIndex) {
assert(!BaseReg.getReg() && "Unexpected base register");
assert(Scale.getImm() == 1);
AddrReg = 0;
} else {
if (!BaseReg.getReg()) {
// No base, fill in relative.
BaseReg.setReg(FlagUseZeroBasedSandbox ? 0 : X86::R15);
AddrReg = IndexReg.getReg();
} else if (!FlagUseZeroBasedSandbox) {
// Switch base and index registers if index register is undefined.
// That is do conversions like "mov d(%r,0,0) -> mov d(%r15, %r, 1)".
assert (!IndexReg.getReg()
&& "Unexpected index and base register");
IndexReg.setReg(BaseReg.getReg());
Scale.setImm(1);
BaseReg.setReg(X86::R15);
AddrReg = IndexReg.getReg();
} else {
llvm_unreachable(
"Unexpected index and base register");
}
}
if (AddrReg) {
assert(!SegmentReg.getReg() && "Unexpected segment register");
SegmentReg.setReg(X86::PSEUDO_NACL_SEG);
Modified = true;
}
}
return Modified;
}
bool X86NaClRewritePass::ApplyRewrites(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
// These direct jumps need their opcode rewritten
// and variable operands removed.
unsigned NewOpc = 0;
switch (Opc) {
// 32-bit direct calls are handled unmodified by the assemblers
case X86::CALLpcrel32 : return true;
case X86::TAILJMPd : NewOpc = X86::JMP_4; break;
case X86::NACL_CG_TAILJMPd64 : NewOpc = X86::JMP_4; break;
case X86::NACL_CG_CALL64pcrel32: NewOpc = X86::NACL_CALL64d; break;
}
if (NewOpc) {
BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
.addOperand(MI.getOperand(0));
MI.eraseFromParent();
return true;
}
// General Dynamic NaCl TLS model
// http://code.google.com/p/nativeclient/issues/detail?id=1685
if (Opc == X86::NACL_CG_GD_TLS_addr64) {
// Rewrite to:
// leaq $sym@TLSGD(%rip), %rdi
// call __tls_get_addr@PLT
BuildMI(MBB, MBBI, DL, TII->get(X86::LEA64r), X86::RDI)
.addReg(X86::RIP) // Base
.addImm(1) // Scale
.addReg(0) // Index
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0); // Segment
BuildMI(MBB, MBBI, DL, TII->get(X86::NACL_CALL64d))
.addExternalSymbol("__tls_get_addr", X86II::MO_PLT);
MI.eraseFromParent();
return true;
}
// Local Exec NaCl TLS Model
if (Opc == X86::NACL_CG_LE_TLS_addr64 ||
Opc == X86::NACL_CG_LE_TLS_addr32) {
unsigned CallOpc, LeaOpc, Reg;
// Rewrite to:
// call __nacl_read_tp@PLT
// lea $sym@flag(,%reg), %reg
if (Opc == X86::NACL_CG_LE_TLS_addr64) {
CallOpc = X86::NACL_CALL64d;
LeaOpc = X86::LEA64r;
Reg = X86::RAX;
} else {
CallOpc = X86::CALLpcrel32;
LeaOpc = X86::LEA32r;
Reg = X86::EAX;
}
BuildMI(MBB, MBBI, DL, TII->get(CallOpc))
.addExternalSymbol("__nacl_read_tp", X86II::MO_PLT);
BuildMI(MBB, MBBI, DL, TII->get(LeaOpc), Reg)
.addReg(0) // Base
.addImm(1) // Scale
.addReg(Reg) // Index
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0); // Segment
MI.eraseFromParent();
return true;
}
// Initial Exec NaCl TLS Model
if (Opc == X86::NACL_CG_IE_TLS_addr64 ||
Opc == X86::NACL_CG_IE_TLS_addr32) {
unsigned CallOpc, AddOpc, Base, Reg;
// Rewrite to:
// call __nacl_read_tp@PLT
// addq sym@flag(%base), %reg
if (Opc == X86::NACL_CG_IE_TLS_addr64) {
CallOpc = X86::NACL_CALL64d;
AddOpc = X86::ADD64rm;
Base = X86::RIP;
Reg = X86::RAX;
} else {
CallOpc = X86::CALLpcrel32;
AddOpc = X86::ADD32rm;
Base = MI.getOperand(3).getTargetFlags() == X86II::MO_INDNTPOFF ?
0 : X86::EBX; // EBX for GOTNTPOFF.
Reg = X86::EAX;
}
BuildMI(MBB, MBBI, DL, TII->get(CallOpc))
.addExternalSymbol("__nacl_read_tp", X86II::MO_PLT);
BuildMI(MBB, MBBI, DL, TII->get(AddOpc), Reg)
.addReg(Reg)
.addReg(Base)
.addImm(1) // Scale
.addReg(0) // Index
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0); // Segment
MI.eraseFromParent();
return true;
}
return false;
}
bool X86NaClRewritePass::AlignJumpTableTargets(MachineFunction &MF) {
bool Modified = true;
MF.setAlignment(5); // log2, 32 = 2^5
MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
if (JTI != NULL) {
const std::vector<MachineJumpTableEntry> &JT = JTI->getJumpTables();
for (unsigned i = 0; i < JT.size(); ++i) {
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
for (unsigned j = 0; j < MBBs.size(); ++j) {
MBBs[j]->setAlignment(5);
Modified |= true;
}
}
}
return Modified;
}
bool X86NaClRewritePass::runOnMachineFunction(MachineFunction &MF) {
bool Modified = false;
TM = &MF.getTarget();
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
Subtarget = &MF.getSubtarget<X86Subtarget>();
Is64Bit = Subtarget->is64Bit();
assert(Subtarget->isTargetNaCl() && "Unexpected target in NaClRewritePass!");
DEBUG(dbgs() << "*************** NaCl Rewrite Pass ***************\n");
for (MachineFunction::iterator MFI = MF.begin(), E = MF.end();
MFI != E;
++MFI) {
Modified |= runOnMachineBasicBlock(*MFI);
}
Modified |= AlignJumpTableTargets(MF);
DEBUG(dbgs() << "*************** NaCl Rewrite DONE ***************\n");
return Modified;
}
bool X86NaClRewritePass::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Modified = false;
if (MBB.hasAddressTaken()) {
//FIXME: use a symbolic constant or get this value from some configuration
MBB.setAlignment(5);
Modified = true;
}
for (MachineBasicBlock::iterator MBBI = MBB.begin(), NextMBBI = MBBI;
MBBI != MBB.end(); MBBI = NextMBBI) {
++NextMBBI;
// When one of these methods makes a change,
// it returns true, skipping the others.
if (ApplyRewrites(MBB, MBBI) ||
(Is64Bit && ApplyStackSFI(MBB, MBBI)) ||
(Is64Bit && ApplyMemorySFI(MBB, MBBI)) ||
(Is64Bit && ApplyFrameSFI(MBB, MBBI)) ||
ApplyControlSFI(MBB, MBBI)) {
Modified = true;
}
}
return Modified;
}
/// createX86NaClRewritePassPass - returns an instance of the pass.
namespace llvm {
FunctionPass* createX86NaClRewritePass() {
return new X86NaClRewritePass();
}
}