blob: b8cc28f70c91389b3742b7548d5f7280aba46b56 [file] [log] [blame]
/*
* Copyright 2018 The Emscripten Authors. All rights reserved.
* Emscripten is available under two separate licenses, the MIT license and the
* University of Illinois/NCSA Open Source License. Both these licenses can be
* found in the LICENSE file.
*
* Simple minimalistic but efficient sbrk()-based malloc/free that works in
* singlethreaded and multithreaded builds.
*
* Assumptions:
*
* - sbrk() is used to claim new memory (sbrk handles geometric/linear
* - overallocation growth)
* - sbrk() can also be called by other code, not reserved to emmalloc only.
* - sbrk() is very fast in most cases (internal wasm call).
* - sbrk() returns pointers with an alignment of alignof(max_align_t)
*
* Invariants:
*
* - Per-allocation header overhead is 8 bytes, smallest allocated payload
* amount is 8 bytes, and a multiple of 4 bytes.
* - Acquired memory blocks are subdivided into disjoint regions that lie
* next to each other.
* - A region is either in used or free.
* Used regions may be adjacent, and a used and unused region
* may be adjacent, but not two unused ones - they would be
* merged.
* - Memory allocation takes constant time, unless the alloc needs to sbrk()
* or memory is very close to being exhausted.
* - Free and used regions are managed inside "root regions", which are slabs
* of memory acquired via calls to sbrk().
*
* Debugging:
*
* - If not NDEBUG, runtime assert()s are in use.
* - If EMMALLOC_MEMVALIDATE is defined, a large amount of extra checks are done.
* - If EMMALLOC_VERBOSE is defined, a lot of operations are logged using
* `out`, in addition to EMMALLOC_MEMVALIDATE.
* - Debugging and logging directly uses `out` and `err` via EM_ASM, not
* printf etc., to minimize any risk of debugging or logging depending on
* malloc.
*
* Exporting:
*
* - By default we declare not only emmalloc_malloc, emmalloc_free, etc. but
* also the standard library methods like malloc, free, and some aliases.
* You can override this by defining EMMALLOC_NO_STD_EXPORTS, in which case
* we only declare the emalloc_* ones but not the standard ones.
*/
#include <errno.h>
#include <stdalign.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <unistd.h>
#include <memory.h>
#include <assert.h>
#include <malloc.h>
#include <stdio.h>
#include <emscripten/heap.h>
#include <emscripten/threading.h>
#ifdef __EMSCRIPTEN_TRACING__
#include <emscripten/trace.h>
#endif
// Behavior of right shifting a signed integer is compiler implementation defined.
static_assert((((int32_t)0x80000000U) >> 31) == -1, "This malloc implementation requires that right-shifting a signed integer produces a sign-extending (arithmetic) shift!");
// Configuration: specifies the minimum alignment that malloc()ed memory outputs. Allocation requests with smaller alignment
// than this will yield an allocation with this much alignment.
#define MALLOC_ALIGNMENT alignof(max_align_t)
static_assert(alignof(max_align_t) == 8, "max_align_t must be correct");
#ifdef EMMALLOC_NO_STD_EXPORTS
#define EMMALLOC_ALIAS(ALIAS, ORIGINAL)
#else
#define EMMALLOC_EXPORT __attribute__((weak, __visibility__("default")))
#define EMMALLOC_ALIAS(ALIAS, ORIGINAL) extern __typeof(ORIGINAL) ALIAS __attribute__((weak, alias(#ORIGINAL)));
#endif
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define NUM_FREE_BUCKETS 64
#define BUCKET_BITMASK_T uint64_t
// Dynamic memory is subdivided into regions, in the format
// <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | .....
// That is, at the bottom and top end of each memory region, the size of that region is stored. That allows traversing the
// memory regions backwards and forwards. Because each allocation must be at least a multiple of 4 bytes, the lowest two bits of
// each size field is unused. Free regions are distinguished by used regions by having the FREE_REGION_FLAG bit present
// in the size field. I.e. for free regions, the size field is odd, and for used regions, the size field reads even.
#define FREE_REGION_FLAG 0x1u
// Attempts to malloc() more than this many bytes would cause an overflow when calculating the size of a region,
// therefore allocations larger than this are short-circuited immediately on entry.
#define MAX_ALLOC_SIZE 0xFFFFFFC7u
// A free region has the following structure:
// <size:size_t> <prevptr> <nextptr> ... <size:size_t>
typedef struct Region {
size_t size;
// Use a circular doubly linked list to represent free region data.
struct Region *prev, *next;
// ... N bytes of free data
size_t _at_the_end_of_this_struct_size; // do not dereference, this is present for convenient struct sizeof() computation only
} Region;
// Each memory block starts with a RootRegion at the beginning.
// The RootRegion specifies the size of the region block, and forms a linked
// list of all RootRegions in the program, starting with `listOfAllRegions`
// below.
typedef struct RootRegion {
uint32_t size;
struct RootRegion *next;
uint8_t* endPtr;
} RootRegion;
#ifdef __EMSCRIPTEN_SHARED_MEMORY__
// In multithreaded builds, use a simple global spinlock strategy to acquire/release access to the memory allocator.
static volatile uint8_t multithreadingLock = 0;
#define MALLOC_ACQUIRE() while (__sync_lock_test_and_set(&multithreadingLock, 1)) { while (multithreadingLock) { /*nop*/ } }
#define MALLOC_RELEASE() __sync_lock_release(&multithreadingLock)
// Test code to ensure we have tight malloc acquire/release guards in place.
#define ASSERT_MALLOC_IS_ACQUIRED() assert(multithreadingLock == 1)
#else
// In singlethreaded builds, no need for locking.
#define MALLOC_ACQUIRE() ((void)0)
#define MALLOC_RELEASE() ((void)0)
#define ASSERT_MALLOC_IS_ACQUIRED() ((void)0)
#endif
#define IS_POWER_OF_2(val) (((val) & ((val)-1)) == 0)
#define ALIGN_UP(ptr, alignment) ((uint8_t*)((((uintptr_t)(ptr)) + ((alignment)-1)) & ~((alignment)-1)))
#define HAS_ALIGNMENT(ptr, alignment) ((((uintptr_t)(ptr)) & ((alignment)-1)) == 0)
static_assert(IS_POWER_OF_2(MALLOC_ALIGNMENT), "MALLOC_ALIGNMENT must be a power of two value!");
static_assert(MALLOC_ALIGNMENT >= 4, "Smallest possible MALLOC_ALIGNMENT if 4!");
// A region that contains as payload a single forward linked list of pointers to
// root regions of each disjoint region blocks.
static RootRegion *listOfAllRegions = NULL;
// For each of the buckets, maintain a linked list head node. The head node for each
// free region is a sentinel node that does not actually represent any free space, but
// the sentinel is used to avoid awkward testing against (if node == freeRegionHeadNode)
// when adding and removing elements from the linked list, i.e. we are guaranteed that
// the sentinel node is always fixed and there, and the actual free region list elements
// start at freeRegionBuckets[i].next each.
static Region freeRegionBuckets[NUM_FREE_BUCKETS];
// A bitmask that tracks the population status for each of the 64 distinct memory regions:
// a zero at bit position i means that the free list bucket i is empty. This bitmask is
// used to avoid redundant scanning of the 64 different free region buckets: instead by
// looking at the bitmask we can find in constant time an index to a free region bucket
// that contains free memory of desired size.
static BUCKET_BITMASK_T freeRegionBucketsUsed = 0;
// Amount of bytes taken up by allocation header data
#define REGION_HEADER_SIZE (2*sizeof(size_t))
// Smallest allocation size that is possible is 2*pointer size, since payload of each region must at least contain space
// to store the free region linked list prev and next pointers. An allocation size smaller than this will be rounded up
// to this size.
#define SMALLEST_ALLOCATION_SIZE (2*sizeof(void*))
/* Subdivide regions of free space into distinct circular doubly linked lists, where each linked list
represents a range of free space blocks. The following function compute_free_list_bucket() converts
an allocation size to the bucket index that should be looked at. The buckets are grouped as follows:
Bucket 0: [8, 15], range size=8
Bucket 1: [16, 23], range size=8
Bucket 2: [24, 31], range size=8
Bucket 3: [32, 39], range size=8
Bucket 4: [40, 47], range size=8
Bucket 5: [48, 55], range size=8
Bucket 6: [56, 63], range size=8
Bucket 7: [64, 71], range size=8
Bucket 8: [72, 79], range size=8
Bucket 9: [80, 87], range size=8
Bucket 10: [88, 95], range size=8
Bucket 11: [96, 103], range size=8
Bucket 12: [104, 111], range size=8
Bucket 13: [112, 119], range size=8
Bucket 14: [120, 159], range size=40
Bucket 15: [160, 191], range size=32
Bucket 16: [192, 223], range size=32
Bucket 17: [224, 255], range size=32
Bucket 18: [256, 319], range size=64
Bucket 19: [320, 383], range size=64
Bucket 20: [384, 447], range size=64
Bucket 21: [448, 511], range size=64
Bucket 22: [512, 639], range size=128
Bucket 23: [640, 767], range size=128
Bucket 24: [768, 895], range size=128
Bucket 25: [896, 1023], range size=128
Bucket 26: [1024, 1279], range size=256
Bucket 27: [1280, 1535], range size=256
Bucket 28: [1536, 1791], range size=256
Bucket 29: [1792, 2047], range size=256
Bucket 30: [2048, 2559], range size=512
Bucket 31: [2560, 3071], range size=512
Bucket 32: [3072, 3583], range size=512
Bucket 33: [3584, 6143], range size=2560
Bucket 34: [6144, 8191], range size=2048
Bucket 35: [8192, 12287], range size=4096
Bucket 36: [12288, 16383], range size=4096
Bucket 37: [16384, 24575], range size=8192
Bucket 38: [24576, 32767], range size=8192
Bucket 39: [32768, 49151], range size=16384
Bucket 40: [49152, 65535], range size=16384
Bucket 41: [65536, 98303], range size=32768
Bucket 42: [98304, 131071], range size=32768
Bucket 43: [131072, 196607], range size=65536
Bucket 44: [196608, 262143], range size=65536
Bucket 45: [262144, 393215], range size=131072
Bucket 46: [393216, 524287], range size=131072
Bucket 47: [524288, 786431], range size=262144
Bucket 48: [786432, 1048575], range size=262144
Bucket 49: [1048576, 1572863], range size=524288
Bucket 50: [1572864, 2097151], range size=524288
Bucket 51: [2097152, 3145727], range size=1048576
Bucket 52: [3145728, 4194303], range size=1048576
Bucket 53: [4194304, 6291455], range size=2097152
Bucket 54: [6291456, 8388607], range size=2097152
Bucket 55: [8388608, 12582911], range size=4194304
Bucket 56: [12582912, 16777215], range size=4194304
Bucket 57: [16777216, 25165823], range size=8388608
Bucket 58: [25165824, 33554431], range size=8388608
Bucket 59: [33554432, 50331647], range size=16777216
Bucket 60: [50331648, 67108863], range size=16777216
Bucket 61: [67108864, 100663295], range size=33554432
Bucket 62: [100663296, 134217727], range size=33554432
Bucket 63: 134217728 bytes and larger. */
static_assert(NUM_FREE_BUCKETS == 64, "Following function is tailored specifically for NUM_FREE_BUCKETS == 64 case");
static int compute_free_list_bucket(size_t allocSize) {
if (allocSize < 128) return (allocSize >> 3) - 1;
int clz = __builtin_clz(allocSize);
int bucketIndex =
(clz > 19)
? 110 - (clz<<2) + ((allocSize >> (29-clz)) ^ 4)
: MIN( 71 - (clz<<1) + ((allocSize >> (30-clz)) ^ 2), NUM_FREE_BUCKETS-1);
assert(bucketIndex >= 0);
assert(bucketIndex < NUM_FREE_BUCKETS);
return bucketIndex;
}
#define DECODE_CEILING_SIZE(size) ((size_t)((size) & ~FREE_REGION_FLAG))
static Region *prev_region(Region *region) {
size_t prevRegionSize = ((size_t*)region)[-1];
prevRegionSize = DECODE_CEILING_SIZE(prevRegionSize);
return (Region*)((uint8_t*)region - prevRegionSize);
}
static Region *next_region(Region *region) {
return (Region*)((uint8_t*)region + region->size);
}
static size_t region_ceiling_size(Region *region) {
return ((size_t*)((uint8_t*)region + region->size))[-1];
}
static bool region_is_free(Region *r) {
return region_ceiling_size(r) & FREE_REGION_FLAG;
}
static bool region_is_in_use(Region *r) {
return r->size == region_ceiling_size(r);
}
static size_t size_of_region_from_ceiling(Region *r) {
size_t size = region_ceiling_size(r);
return DECODE_CEILING_SIZE(size);
}
static bool debug_region_is_consistent(Region *r) {
assert(r);
size_t sizeAtBottom = r->size;
size_t sizeAtCeiling = size_of_region_from_ceiling(r);
return sizeAtBottom == sizeAtCeiling;
}
static uint8_t *region_payload_start_ptr(Region *region) {
return (uint8_t*)region + sizeof(size_t);
}
static uint8_t *region_payload_end_ptr(Region *region) {
return (uint8_t*)region + region->size - sizeof(size_t);
}
static void create_used_region(void *ptr, size_t size) {
assert(ptr);
assert(HAS_ALIGNMENT(ptr, sizeof(size_t)));
assert(HAS_ALIGNMENT(size, sizeof(size_t)));
assert(size >= sizeof(Region));
*(size_t*)ptr = size;
((size_t*)ptr)[(size/sizeof(size_t))-1] = size;
}
static void create_free_region(void *ptr, size_t size) {
assert(ptr);
assert(HAS_ALIGNMENT(ptr, sizeof(size_t)));
assert(HAS_ALIGNMENT(size, sizeof(size_t)));
assert(size >= sizeof(Region));
Region *freeRegion = (Region*)ptr;
freeRegion->size = size;
((size_t*)ptr)[(size/sizeof(size_t))-1] = size | FREE_REGION_FLAG;
}
static void prepend_to_free_list(Region *region, Region *prependTo) {
assert(region);
assert(prependTo);
// N.b. the region we are prepending to is always the sentinel node,
// which represents a dummy node that is technically not a free node, so
// region_is_free(prependTo) does not hold.
assert(region_is_free((Region*)region));
region->next = prependTo;
region->prev = prependTo->prev;
assert(region->prev);
prependTo->prev = region;
region->prev->next = region;
}
static void unlink_from_free_list(Region *region) {
assert(region);
assert(region_is_free((Region*)region));
assert(region->prev);
assert(region->next);
region->prev->next = region->next;
region->next->prev = region->prev;
}
static void link_to_free_list(Region *freeRegion) {
assert(freeRegion);
assert(freeRegion->size >= sizeof(Region));
int bucketIndex = compute_free_list_bucket(freeRegion->size-REGION_HEADER_SIZE);
Region *freeListHead = freeRegionBuckets + bucketIndex;
freeRegion->prev = freeListHead;
freeRegion->next = freeListHead->next;
assert(freeRegion->next);
freeListHead->next = freeRegion;
freeRegion->next->prev = freeRegion;
freeRegionBucketsUsed |= ((BUCKET_BITMASK_T)1) << bucketIndex;
}
static void dump_memory_regions() {
ASSERT_MALLOC_IS_ACQUIRED();
RootRegion *root = listOfAllRegions;
MAIN_THREAD_ASYNC_EM_ASM(out('All memory regions:'));
while (root) {
Region *r = (Region*)root;
assert(debug_region_is_consistent(r));
uint8_t *lastRegionEnd = root->endPtr;
MAIN_THREAD_ASYNC_EM_ASM(out('Region block '+ptrToString($0)+' - '+ptrToString($1)+ ' ('+Number($2)+' bytes):'),
r, lastRegionEnd, lastRegionEnd-(uint8_t*)r);
while ((uint8_t*)r < lastRegionEnd) {
MAIN_THREAD_ASYNC_EM_ASM(out('Region '+ptrToString($0)+', size: '+Number($1)+' ('+($2?"used":"--FREE--")+')'),
r, r->size, region_ceiling_size(r) == r->size);
assert(debug_region_is_consistent(r));
size_t sizeFromCeiling = size_of_region_from_ceiling(r);
if (sizeFromCeiling != r->size) {
MAIN_THREAD_ASYNC_EM_ASM(out('Corrupt region! Size marker at the end of the region does not match: '+Number($0)), sizeFromCeiling);
}
if (r->size == 0) {
break;
}
r = next_region(r);
}
root = root->next;
MAIN_THREAD_ASYNC_EM_ASM(out(""));
}
MAIN_THREAD_ASYNC_EM_ASM(out('Free regions:'));
for (int i = 0; i < NUM_FREE_BUCKETS; ++i) {
Region *prev = &freeRegionBuckets[i];
Region *fr = freeRegionBuckets[i].next;
while (fr != &freeRegionBuckets[i]) {
MAIN_THREAD_ASYNC_EM_ASM(out('In bucket '+$0+', free region '+ptrToString($1)+', size: ' + Number($2) + ' (size at ceiling: '+Number($3)+'), prev: ' + ptrToString($4) + ', next: ' + ptrToString($5)),
i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next);
assert(debug_region_is_consistent(fr));
assert(region_is_free(fr));
assert(fr->prev == prev);
prev = fr;
assert(fr->next != fr);
assert(fr->prev != fr);
fr = fr->next;
}
}
MAIN_THREAD_ASYNC_EM_ASM(out('Free bucket index map: ' + Number($0).toString(2) + ' ' + Number($1).toString(2)), (uint32_t)(freeRegionBucketsUsed >> 32), (uint32_t)freeRegionBucketsUsed);
MAIN_THREAD_ASYNC_EM_ASM(out(""));
}
void emmalloc_dump_memory_regions() {
MALLOC_ACQUIRE();
dump_memory_regions();
MALLOC_RELEASE();
}
static int validate_memory_regions() {
ASSERT_MALLOC_IS_ACQUIRED();
RootRegion *root = listOfAllRegions;
while (root) {
Region *r = (Region*)root;
if (!debug_region_is_consistent(r)) {
MAIN_THREAD_ASYNC_EM_ASM(err('Used region '+ptrToString($0)+', size: '+Number($1)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'),
r, r->size, region_ceiling_size(r) == r->size);
return 1;
}
uint8_t *lastRegionEnd = root->endPtr;
while ((uint8_t*)r < lastRegionEnd) {
if (!debug_region_is_consistent(r)) {
MAIN_THREAD_ASYNC_EM_ASM(err('Used region '+ptrToString($0)+', size: '+Number($1)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'),
r, r->size, region_ceiling_size(r) == r->size);
return 1;
}
if (r->size == 0) {
break;
}
r = next_region(r);
}
root = root->next;
}
for (int i = 0; i < NUM_FREE_BUCKETS; ++i) {
Region *prev = &freeRegionBuckets[i];
Region *fr = freeRegionBuckets[i].next;
while (fr != &freeRegionBuckets[i]) {
if (!debug_region_is_consistent(fr) || !region_is_free(fr) || fr->prev != prev || fr->next == fr || fr->prev == fr) {
MAIN_THREAD_ASYNC_EM_ASM(out('In bucket '+$0+', free region '+ptrToString($1)+', size: ' + Number($2) + ' (size at ceiling: '+Number($3)+'), prev: ' + ptrToString($4) + ', next: 0x' + ptrToString($5) + ' is corrupt!'),
i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next);
return 1;
}
prev = fr;
fr = fr->next;
}
}
return 0;
}
int emmalloc_validate_memory_regions() {
MALLOC_ACQUIRE();
int memoryError = validate_memory_regions();
MALLOC_RELEASE();
return memoryError;
}
static bool claim_more_memory(size_t numBytes) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('claim_more_memory(numBytes='+Number($0)+ ')'), numBytes);
#endif
#ifdef EMMALLOC_MEMVALIDATE
validate_memory_regions();
#endif
// Make sure we always send sbrk requests with the same alignment that sbrk()
// allocates memory at. Otherwise we will not properly interpret returned memory
// to form a seamlessly contiguous region with earlier root regions, which would
// lead to inefficiently treating the sbrk()ed region to be a new disjoint root
// region.
numBytes = (size_t)ALIGN_UP(numBytes, MALLOC_ALIGNMENT);
// Claim memory via sbrk
uint8_t *startPtr = (uint8_t*)sbrk(numBytes);
if ((intptr_t)startPtr == -1) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(err('claim_more_memory: sbrk failed!'));
#endif
return false;
}
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('claim_more_memory: claimed ' + ptrToString($0) + ' - ' + ptrToString($1) + ' (' + Number($2) + ' bytes) via sbrk()'), startPtr, startPtr + numBytes, numBytes);
#endif
assert(HAS_ALIGNMENT(startPtr, alignof(size_t)));
uint8_t *endPtr = startPtr + numBytes;
// Create a sentinel region at the end of the new heap block
Region *endSentinelRegion = (Region*)(endPtr - sizeof(Region));
create_used_region(endSentinelRegion, sizeof(Region));
// If we are the sole user of sbrk(), it will feed us continuous/consecutive memory addresses - take advantage
// of that if so: instead of creating two disjoint memory regions blocks, expand the previous one to a larger size.
uint8_t *previousSbrkEndAddress = listOfAllRegions ? listOfAllRegions->endPtr : 0;
if (startPtr == previousSbrkEndAddress) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(err('claim_more_memory: sbrk() returned a region contiguous to last root region, expanding the existing root region'));
#endif
Region *prevEndSentinel = prev_region((Region*)startPtr);
assert(debug_region_is_consistent(prevEndSentinel));
assert(region_is_in_use(prevEndSentinel));
Region *prevRegion = prev_region(prevEndSentinel);
assert(debug_region_is_consistent(prevRegion));
listOfAllRegions->endPtr = endPtr;
// Two scenarios, either the last region of the previous block was in use, in which case we need to create
// a new free region in the newly allocated space; or it was free, in which case we can extend that region
// to cover a larger size.
if (region_is_free(prevRegion)) {
size_t newFreeRegionSize = (uint8_t*)endSentinelRegion - (uint8_t*)prevRegion;
unlink_from_free_list(prevRegion);
create_free_region(prevRegion, newFreeRegionSize);
link_to_free_list(prevRegion);
return true;
}
// else: last region of the previous block was in use. Since we are joining two consecutive sbrk() blocks,
// we can swallow the end sentinel of the previous block away.
startPtr -= sizeof(Region);
} else {
// Unfortunately some other user has sbrk()ed to acquire a slab of memory for themselves, and now the sbrk()ed
// memory we got is not contiguous with our previous managed root regions.
// So create a new root region at the start of the sbrk()ed heap block.
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(err('claim_more_memory: sbrk() returned a disjoint region to last root region, some external code must have sbrk()ed outside emmalloc(). Creating a new root region'));
#endif
create_used_region(startPtr, sizeof(Region));
// Dynamic heap start region:
RootRegion *newRegionBlock = (RootRegion*)startPtr;
newRegionBlock->next = listOfAllRegions; // Pointer to next region block head
newRegionBlock->endPtr = endPtr; // Pointer to the end address of this region block
listOfAllRegions = newRegionBlock;
startPtr += sizeof(Region);
}
// Create a new memory region for the new claimed free space.
create_free_region(startPtr, (uint8_t*)endSentinelRegion - startPtr);
link_to_free_list((Region*)startPtr);
return true;
}
// Initialize emmalloc during static initialization.
// See system/lib/README.md for static constructor ordering.
__attribute__((constructor(47)))
static void initialize_emmalloc_heap() {
// Initialize circular doubly linked lists representing free space
// Never useful to unroll this for loop, just takes up code size.
#pragma clang loop unroll(disable)
for (int i = 0; i < NUM_FREE_BUCKETS; ++i) {
freeRegionBuckets[i].prev = freeRegionBuckets[i].next = &freeRegionBuckets[i];
}
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('initialize_emmalloc_heap()'));
#endif
// Start with a tiny dynamic region.
claim_more_memory(3*sizeof(Region));
}
void emmalloc_blank_slate_from_orbit() {
MALLOC_ACQUIRE();
listOfAllRegions = NULL;
freeRegionBucketsUsed = 0;
initialize_emmalloc_heap();
MALLOC_RELEASE();
}
static void *attempt_allocate(Region *freeRegion, size_t alignment, size_t size) {
ASSERT_MALLOC_IS_ACQUIRED();
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('attempt_allocate(freeRegion=' + ptrToString($0) + ',alignment=' + Number($1) + ',size=' + Number($2) + ')'), freeRegion, alignment, size);
#endif
assert(freeRegion);
// Look at the next potential free region to allocate into.
// First, we should check if the free region has enough of payload bytes contained
// in it to accommodate the new allocation. This check needs to take account the
// requested allocation alignment, so the payload memory area needs to be rounded
// upwards to the desired alignment.
uint8_t *payloadStartPtr = region_payload_start_ptr(freeRegion);
uint8_t *payloadStartPtrAligned = ALIGN_UP(payloadStartPtr, alignment);
uint8_t *payloadEndPtr = region_payload_end_ptr(freeRegion);
// Do we have enough free space, taking into account alignment?
if (payloadStartPtrAligned + size > payloadEndPtr) {
return NULL;
}
// We have enough free space, so the memory allocation will be made into this region. Remove this free region
// from the list of free regions: whatever slop remains will be later added back to the free region pool.
unlink_from_free_list(freeRegion);
// Before we proceed further, fix up the boundary between this and the preceding region,
// so that the boundary between the two regions happens at a right spot for the payload to be aligned.
if (payloadStartPtr != payloadStartPtrAligned) {
Region *prevRegion = prev_region((Region*)freeRegion);
// We never have two free regions adjacent to each other, so the region before this free
// region should be in use.
assert(region_is_in_use(prevRegion));
size_t regionBoundaryBumpAmount = payloadStartPtrAligned - payloadStartPtr;
size_t newThisRegionSize = freeRegion->size - regionBoundaryBumpAmount;
create_used_region(prevRegion, prevRegion->size + regionBoundaryBumpAmount);
freeRegion = (Region *)((uint8_t*)freeRegion + regionBoundaryBumpAmount);
freeRegion->size = newThisRegionSize;
}
// Next, we need to decide whether this region is so large that it should be split into two regions,
// one representing the newly used memory area, and at the high end a remaining leftover free area.
// This splitting to two is done always if there is enough space for the high end to fit a region.
// Carve 'size' bytes of payload off this region. So,
// [sz prev next sz]
// becomes
// [sz payload sz] [sz prev next sz]
if (sizeof(Region) + REGION_HEADER_SIZE + size <= freeRegion->size) {
// There is enough space to keep a free region at the end of the carved out block
// -> construct the new block
Region *newFreeRegion = (Region *)((uint8_t*)freeRegion + REGION_HEADER_SIZE + size);
create_free_region(newFreeRegion, freeRegion->size - size - REGION_HEADER_SIZE);
link_to_free_list(newFreeRegion);
// Recreate the resized Region under its new size.
create_used_region(freeRegion, size + REGION_HEADER_SIZE);
} else {
// There is not enough space to split the free memory region into used+free parts, so consume the whole
// region as used memory, not leaving a free memory region behind.
// Initialize the free region as used by resetting the ceiling size to the same value as the size at bottom.
((size_t*)((uint8_t*)freeRegion + freeRegion->size))[-1] = freeRegion->size;
}
#ifdef __EMSCRIPTEN_TRACING__
emscripten_trace_record_allocation(freeRegion, freeRegion->size);
#endif
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('attempt_allocate - succeeded allocating memory, region ptr=' + ptrToString($0) + ', align=' + $1 + ', payload size=' + Number($2) + ' bytes)'), freeRegion, alignment, size);
#endif
return (uint8_t*)freeRegion + sizeof(size_t);
}
static size_t validate_alloc_alignment(size_t alignment) {
// Cannot perform allocations that are less our minimal alignment, because
// the Region control structures need to be aligned themselves.
return MAX(alignment, MALLOC_ALIGNMENT);
}
static size_t validate_alloc_size(size_t size) {
assert(size + REGION_HEADER_SIZE > size);
// Allocation sizes must be a multiple of pointer sizes, and at least 2*sizeof(pointer).
size_t validatedSize = size > SMALLEST_ALLOCATION_SIZE ? (size_t)ALIGN_UP(size, sizeof(Region*)) : SMALLEST_ALLOCATION_SIZE;
assert(validatedSize >= size); // 32-bit wraparound should not occur, too large sizes should be stopped before
return validatedSize;
}
EM_JS_DEPS(deps, "$ptrToString");
static void *allocate_memory(size_t alignment, size_t size) {
ASSERT_MALLOC_IS_ACQUIRED();
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('allocate_memory(align=' + $0 + ', size=' + Number($1) + ' bytes)'), alignment, size);
#endif
#ifdef EMMALLOC_MEMVALIDATE
validate_memory_regions();
#endif
if (!IS_POWER_OF_2(alignment)) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Allocation failed: alignment not power of 2!'));
#endif
return 0;
}
if (size > MAX_ALLOC_SIZE) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Allocation failed: attempted allocation size is too large: ' + Number($0) + 'bytes! (negative integer wraparound?)'), size);
#endif
return 0;
}
alignment = validate_alloc_alignment(alignment);
size = validate_alloc_size(size);
// Attempt to allocate memory starting from smallest bucket that can contain the required amount of memory.
// Under normal alignment conditions this should always be the first or second bucket we look at, but if
// performing an allocation with complex alignment, we may need to look at multiple buckets.
int bucketIndex = compute_free_list_bucket(size);
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed >> bucketIndex;
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
while (bucketMask) {
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
bucketIndex += indexAdd;
bucketMask >>= indexAdd;
assert(bucketIndex >= 0);
assert(bucketIndex <= NUM_FREE_BUCKETS-1);
assert(freeRegionBucketsUsed & (((BUCKET_BITMASK_T)1) << bucketIndex));
Region *freeRegion = freeRegionBuckets[bucketIndex].next;
assert(freeRegion);
if (freeRegion != &freeRegionBuckets[bucketIndex]) {
void *ptr = attempt_allocate(freeRegion, alignment, size);
if (ptr) {
return ptr;
}
// We were not able to allocate from the first region found in this bucket, so penalize
// the region by cycling it to the end of the doubly circular linked list. (constant time)
// This provides a randomized guarantee that when performing allocations of size k to a
// bucket of [k-something, k+something] range, we will not always attempt to satisfy the
// allocation from the same available region at the front of the list, but we try each
// region in turn.
unlink_from_free_list(freeRegion);
prepend_to_free_list(freeRegion, &freeRegionBuckets[bucketIndex]);
// But do not stick around to attempt to look at other regions in this bucket - move
// to search the next populated bucket index if this did not fit. This gives a practical
// "allocation in constant time" guarantee, since the next higher bucket will only have
// regions that are all of strictly larger size than the requested allocation. Only if
// there is a difficult alignment requirement we may fail to perform the allocation from
// a region in the next bucket, and if so, we keep trying higher buckets until one of them
// works.
++bucketIndex;
bucketMask >>= 1;
} else {
// This bucket was not populated after all with any regions,
// but we just had a stale bit set to mark a populated bucket.
// Reset the bit to update latest status so that we do not
// redundantly look at this bucket again.
freeRegionBucketsUsed &= ~(((BUCKET_BITMASK_T)1) << bucketIndex);
bucketMask ^= 1;
}
// Instead of recomputing bucketMask from scratch at the end of each loop, it is updated as we go,
// to avoid undefined behavior with (x >> 32)/(x >> 64) when bucketIndex reaches 32/64, (the shift would come out as a no-op instead of 0).
assert((bucketIndex == NUM_FREE_BUCKETS && bucketMask == 0) || (bucketMask == freeRegionBucketsUsed >> bucketIndex));
}
// None of the buckets were able to accommodate an allocation. If this happens we are almost out of memory.
// The largest bucket might contain some suitable regions, but we only looked at one region in that bucket, so
// as a last resort, loop through more free regions in the bucket that represents the largest allocations available.
// But only if the bucket representing largest allocations available is not any of the first thirty buckets,
// these represent allocatable areas less than <1024 bytes - which could be a lot of scrap.
// In such case, prefer to sbrk() in more memory right away.
int largestBucketIndex = NUM_FREE_BUCKETS - 1 - __builtin_clzll(freeRegionBucketsUsed);
// freeRegion will be null if there is absolutely no memory left. (all buckets are 100% used)
Region *freeRegion = freeRegionBucketsUsed ? freeRegionBuckets[largestBucketIndex].next : 0;
// The 30 first free region buckets cover memory blocks < 2048 bytes, so skip looking at those here (too small)
if (freeRegionBucketsUsed >> 30) {
// Look only at a constant number of regions in this bucket max, to avoid bad worst case behavior.
// If this many regions cannot find free space, we give up and prefer to sbrk() more instead.
const int maxRegionsToTryBeforeGivingUp = 99;
int numTriesLeft = maxRegionsToTryBeforeGivingUp;
while (freeRegion != &freeRegionBuckets[largestBucketIndex] && numTriesLeft-- > 0) {
void *ptr = attempt_allocate(freeRegion, alignment, size);
if (ptr) {
return ptr;
}
freeRegion = freeRegion->next;
}
}
// We were unable to find a free memory region. Must sbrk() in more memory!
size_t numBytesToClaim = size+sizeof(Region)*3;
// Take into account the alignment as well. For typical alignment we don't
// need to add anything here (so we do nothing if the alignment is equal to
// MALLOC_ALIGNMENT), but it can matter if the alignment is very high. In that
// case, not adding the alignment can lead to this sbrk not giving us enough
// (in which case, the next attempt fails and will sbrk the same amount again,
// potentially allocating a lot more memory than necessary).
//
// Note that this is not necessarily optimal, as the extra allocation size for
// the alignment might not be needed (if we are lucky and already aligned),
// and even if it helps us allocate it will not immediately be ready for reuse
// (as it will be added to the currently-in-use region before us, so it is not
// in a free list). As a compromise however it seems reasonable in practice as
// a way to handle large aligned regions to avoid even worse waste.
if (alignment > MALLOC_ALIGNMENT) {
numBytesToClaim += alignment;
}
assert(numBytesToClaim > size); // 32-bit wraparound should not happen here, allocation size has been validated above!
bool success = claim_more_memory(numBytesToClaim);
if (success) {
// Recurse back to itself to try again
return allocate_memory(alignment, size);
}
// also sbrk() failed, we are really really constrained :( As a last resort, go back to looking at the
// bucket we already looked at above, continuing where the above search left off - perhaps there are
// regions we overlooked the first time that might be able to satisfy the allocation.
if (freeRegion) {
while (freeRegion != &freeRegionBuckets[largestBucketIndex]) {
void *ptr = attempt_allocate(freeRegion, alignment, size);
if (ptr) {
return ptr;
}
freeRegion = freeRegion->next;
}
}
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Could not find a free memory block!'));
#endif
return 0;
}
void *emmalloc_memalign(size_t alignment, size_t size) {
MALLOC_ACQUIRE();
void *ptr = allocate_memory(alignment, size);
MALLOC_RELEASE();
return ptr;
}
EMMALLOC_ALIAS(emscripten_builtin_memalign, emmalloc_memalign);
EMMALLOC_ALIAS(memalign, emmalloc_memalign);
#ifndef EMMALLOC_NO_STD_EXPORTS
void * EMMALLOC_EXPORT aligned_alloc(size_t alignment, size_t size) {
if ((alignment % sizeof(void *) != 0) || (size % alignment) != 0) {
return 0;
}
return emmalloc_memalign(alignment, size);
}
#endif
void *emmalloc_malloc(size_t size) {
return emmalloc_memalign(MALLOC_ALIGNMENT, size);
}
EMMALLOC_ALIAS(emscripten_builtin_malloc, emmalloc_malloc);
EMMALLOC_ALIAS(__libc_malloc, emmalloc_malloc);
EMMALLOC_ALIAS(malloc, emmalloc_malloc);
size_t emmalloc_usable_size(void *ptr) {
if (!ptr) {
return 0;
}
uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t);
Region *region = (Region*)(regionStartPtr);
assert(HAS_ALIGNMENT(region, sizeof(size_t)));
MALLOC_ACQUIRE();
size_t size = region->size;
assert(size >= sizeof(Region));
assert(region_is_in_use(region));
MALLOC_RELEASE();
return size - REGION_HEADER_SIZE;
}
EMMALLOC_ALIAS(malloc_usable_size, emmalloc_usable_size);
void emmalloc_free(void *ptr) {
#ifdef EMMALLOC_MEMVALIDATE
emmalloc_validate_memory_regions();
#endif
if (!ptr) {
return;
}
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('free(ptr='+ptrToString($0)+')'), ptr);
#endif
uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t);
Region *region = (Region*)(regionStartPtr);
assert(HAS_ALIGNMENT(region, sizeof(size_t)));
MALLOC_ACQUIRE();
size_t size = region->size;
#ifdef EMMALLOC_VERBOSE
if (size < sizeof(Region) || !region_is_in_use(region)) {
if (debug_region_is_consistent(region)) {
// LLVM wasm backend bug: cannot use MAIN_THREAD_ASYNC_EM_ASM() here, that generates internal compiler error
// Reproducible by running e.g. other.test_alloc_3GB
EM_ASM(err('Double free at region ptr ' + ptrToString($0) + ', region->size: ' + ptrToString($1) + ', region->sizeAtCeiling: ' + ptrToString($2) + ')'), region, size, region_ceiling_size(region));
} else {
MAIN_THREAD_ASYNC_EM_ASM(err('Corrupt region at region ptr ' + ptrToString($0) + ' region->size: ' + ptrToString($1) + ', region->sizeAtCeiling: ' + ptrToString($2) + ')'), region, size, region_ceiling_size(region));
}
}
#endif
assert(size >= sizeof(Region));
assert(region_is_in_use(region));
#ifdef __EMSCRIPTEN_TRACING__
emscripten_trace_record_free(region);
#endif
// Check merging with left side
size_t prevRegionSizeField = ((size_t*)region)[-1];
size_t prevRegionSize = prevRegionSizeField & ~FREE_REGION_FLAG;
if (prevRegionSizeField != prevRegionSize) { // Previous region is free?
Region *prevRegion = (Region*)((uint8_t*)region - prevRegionSize);
assert(debug_region_is_consistent(prevRegion));
unlink_from_free_list(prevRegion);
regionStartPtr = (uint8_t*)prevRegion;
size += prevRegionSize;
}
// Check merging with right side
Region *nextRegion = next_region(region);
assert(debug_region_is_consistent(nextRegion));
size_t sizeAtEnd = *(size_t*)region_payload_end_ptr(nextRegion);
if (nextRegion->size != sizeAtEnd) {
unlink_from_free_list(nextRegion);
size += nextRegion->size;
}
create_free_region(regionStartPtr, size);
link_to_free_list((Region*)regionStartPtr);
MALLOC_RELEASE();
#ifdef EMMALLOC_MEMVALIDATE
emmalloc_validate_memory_regions();
#endif
}
EMMALLOC_ALIAS(emscripten_builtin_free, emmalloc_free);
EMMALLOC_ALIAS(__libc_free, emmalloc_free);
EMMALLOC_ALIAS(free, emmalloc_free);
// Can be called to attempt to increase or decrease the size of the given region
// to a new size (in-place). Returns 1 if resize succeeds, and 0 on failure.
static int attempt_region_resize(Region *region, size_t size) {
ASSERT_MALLOC_IS_ACQUIRED();
assert(size > 0);
assert(HAS_ALIGNMENT(size, sizeof(size_t)));
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('attempt_region_resize(region=' + ptrToString($0) + ', size=' + Number($1) + ' bytes)'), region, size);
#endif
// First attempt to resize this region, if the next region that follows this one
// is a free region.
Region *nextRegion = next_region(region);
uint8_t *nextRegionEndPtr = (uint8_t*)nextRegion + nextRegion->size;
size_t sizeAtCeiling = ((size_t*)nextRegionEndPtr)[-1];
if (nextRegion->size != sizeAtCeiling) { // Next region is free?
assert(region_is_free(nextRegion));
uint8_t *newNextRegionStartPtr = (uint8_t*)region + size;
assert(HAS_ALIGNMENT(newNextRegionStartPtr, sizeof(size_t)));
// Next region does not shrink to too small size?
if (newNextRegionStartPtr + sizeof(Region) <= nextRegionEndPtr) {
unlink_from_free_list(nextRegion);
create_free_region(newNextRegionStartPtr, nextRegionEndPtr - newNextRegionStartPtr);
link_to_free_list((Region*)newNextRegionStartPtr);
create_used_region(region, newNextRegionStartPtr - (uint8_t*)region);
return 1;
}
// If we remove the next region altogether, allocation is satisfied?
if (newNextRegionStartPtr <= nextRegionEndPtr) {
unlink_from_free_list(nextRegion);
create_used_region(region, region->size + nextRegion->size);
return 1;
}
} else {
// Next region is an used region - we cannot change its starting address. However if we are shrinking the
// size of this region, we can create a new free region between this and the next used region.
if (size + sizeof(Region) <= region->size) {
size_t freeRegionSize = region->size - size;
create_used_region(region, size);
Region *freeRegion = (Region *)((uint8_t*)region + size);
create_free_region(freeRegion, freeRegionSize);
link_to_free_list(freeRegion);
return 1;
} else if (size <= region->size) {
// Caller was asking to shrink the size, but due to not being able to fit a full Region in the shrunk
// area, we cannot actually do anything. This occurs if the shrink amount is really small. In such case,
// just call it success without doing any work.
return 1;
}
}
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('attempt_region_resize failed.'));
#endif
return 0;
}
static int acquire_and_attempt_region_resize(Region *region, size_t size) {
MALLOC_ACQUIRE();
int success = attempt_region_resize(region, size);
MALLOC_RELEASE();
return success;
}
void *emmalloc_aligned_realloc(void *ptr, size_t alignment, size_t size) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('aligned_realloc(ptr=' + ptrToString($0) + ', alignment=' + $1 + ', size=' + Number($2)), ptr, alignment, size);
#endif
if (!ptr) {
return emmalloc_memalign(alignment, size);
}
if (size == 0) {
free(ptr);
return 0;
}
if (size > MAX_ALLOC_SIZE) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Allocation failed: attempted allocation size is too large: ' + Number($0) + 'bytes! (negative integer wraparound?)'), size);
#endif
return 0;
}
assert(IS_POWER_OF_2(alignment));
// aligned_realloc() cannot be used to ask to change the alignment of a pointer.
assert(HAS_ALIGNMENT(ptr, alignment));
size = validate_alloc_size(size);
// Calculate the region start address of the original allocation
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));
// First attempt to resize the given region to avoid having to copy memory around
if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) {
#ifdef __EMSCRIPTEN_TRACING__
emscripten_trace_record_reallocation(ptr, ptr, size);
#endif
return ptr;
}
// If resize failed, we must allocate a new region, copy the data over, and then
// free the old region.
void *newptr = emmalloc_memalign(alignment, size);
if (newptr) {
memcpy(newptr, ptr, MIN(size, region->size - REGION_HEADER_SIZE));
free(ptr);
}
// N.B. If there is not enough memory, the old memory block should not be freed and
// null pointer is returned.
return newptr;
}
EMMALLOC_ALIAS(aligned_realloc, emmalloc_aligned_realloc);
// realloc_try() is like realloc(), but only attempts to try to resize the existing memory
// area. If resizing the existing memory area fails, then realloc_try() will return 0
// (the original memory block is not freed or modified). If resizing succeeds, previous
// memory contents will be valid up to min(old length, new length) bytes.
void *emmalloc_realloc_try(void *ptr, size_t size) {
if (!ptr) {
return 0;
}
if (size == 0) {
free(ptr);
return 0;
}
if (size > MAX_ALLOC_SIZE) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Allocation failed: attempted allocation size is too large: ' + Number($0) + 'bytes! (negative integer wraparound?)'), size);
#endif
return 0;
}
size = validate_alloc_size(size);
// Calculate the region start address of the original allocation
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));
// Attempt to resize the given region to avoid having to copy memory around
int success = acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE);
#ifdef __EMSCRIPTEN_TRACING__
if (success) {
emscripten_trace_record_reallocation(ptr, ptr, size);
}
#endif
return success ? ptr : 0;
}
// emmalloc_aligned_realloc_uninitialized() is like aligned_realloc(), but old memory contents
// will be undefined after reallocation. (old memory is not preserved in any case)
void *emmalloc_aligned_realloc_uninitialized(void *ptr, size_t alignment, size_t size) {
if (!ptr) {
return emmalloc_memalign(alignment, size);
}
if (size == 0) {
free(ptr);
return 0;
}
if (size > MAX_ALLOC_SIZE) {
#ifdef EMMALLOC_VERBOSE
MAIN_THREAD_ASYNC_EM_ASM(out('Allocation failed: attempted allocation size is too large: ' + Number($0) + 'bytes! (negative integer wraparound?)'), size);
#endif
return 0;
}
size = validate_alloc_size(size);
// Calculate the region start address of the original allocation
Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));
// First attempt to resize the given region to avoid having to copy memory around
if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) {
#ifdef __EMSCRIPTEN_TRACING__
emscripten_trace_record_reallocation(ptr, ptr, size);
#endif
return ptr;
}
// If resize failed, drop the old region and allocate a new region. Memory is not
// copied over
free(ptr);
return emmalloc_memalign(alignment, size);
}
void *emmalloc_realloc(void *ptr, size_t size) {
return emmalloc_aligned_realloc(ptr, MALLOC_ALIGNMENT, size);
}
EMMALLOC_ALIAS(emscripten_builtin_realloc, emmalloc_realloc);
EMMALLOC_ALIAS(__libc_realloc, emmalloc_realloc);
EMMALLOC_ALIAS(realloc, emmalloc_realloc);
// realloc_uninitialized() is like realloc(), but old memory contents
// will be undefined after reallocation. (old memory is not preserved in any case)
void *emmalloc_realloc_uninitialized(void *ptr, size_t size) {
return emmalloc_aligned_realloc_uninitialized(ptr, MALLOC_ALIGNMENT, size);
}
int emmalloc_posix_memalign(void **memptr, size_t alignment, size_t size) {
assert(memptr);
if (alignment % sizeof(void *) != 0) {
return EINVAL;
}
*memptr = emmalloc_memalign(alignment, size);
return *memptr ? 0 : ENOMEM;
}
EMMALLOC_ALIAS(posix_memalign, emmalloc_posix_memalign);
void *emmalloc_calloc(size_t num, size_t size) {
size_t bytes = num*size;
void *ptr = emmalloc_memalign(MALLOC_ALIGNMENT, bytes);
if (ptr) {
memset(ptr, 0, bytes);
}
return ptr;
}
EMMALLOC_ALIAS(emscripten_builtin_calloc, emmalloc_calloc);
EMMALLOC_ALIAS(__libc_calloc, emmalloc_calloc);
EMMALLOC_ALIAS(calloc, emmalloc_calloc);
static int count_linked_list_size(Region *list) {
int size = 1;
for (Region *i = list->next; i != list; list = list->next) {
++size;
}
return size;
}
static size_t count_linked_list_space(Region *list) {
size_t space = 0;
for (Region *i = list->next; i != list; list = list->next) {
space += region_payload_end_ptr(i) - region_payload_start_ptr(i);
}
return space;
}
struct mallinfo emmalloc_mallinfo() {
MALLOC_ACQUIRE();
struct mallinfo info;
// Non-mmapped space allocated (bytes): For emmalloc,
// let's define this as the difference between heap size and dynamic top end.
info.arena = emscripten_get_heap_size() - (size_t)sbrk(0);
// Number of "ordinary" blocks. Let's define this as the number of highest
// size blocks. (subtract one from each, since there is a sentinel node in each list)
info.ordblks = count_linked_list_size(&freeRegionBuckets[NUM_FREE_BUCKETS-1])-1;
// Number of free "fastbin" blocks. For emmalloc, define this as the number
// of blocks that are not in the largest pristine block.
info.smblks = 0;
// The total number of bytes in free "fastbin" blocks.
info.fsmblks = 0;
for (int i = 0; i < NUM_FREE_BUCKETS-1; ++i) {
info.smblks += count_linked_list_size(&freeRegionBuckets[i])-1;
info.fsmblks += count_linked_list_space(&freeRegionBuckets[i]);
}
info.hblks = 0; // Number of mmapped regions: always 0. (no mmap support)
info.hblkhd = 0; // Amount of bytes in mmapped regions: always 0. (no mmap support)
// Walk through all the heap blocks to report the following data:
// The "highwater mark" for allocated space—that is, the maximum amount of
// space that was ever allocated. Emmalloc does not want to pay code to
// track this, so this is only reported from current allocation data, and
// may not be accurate.
info.usmblks = 0;
info.uordblks = 0; // The total number of bytes used by in-use allocations.
info.fordblks = 0; // The total number of bytes in free blocks.
// The total amount of releasable free space at the top of the heap.
// This is the maximum number of bytes that could ideally be released by malloc_trim(3).
Region *lastActualRegion = prev_region((Region*)(listOfAllRegions->endPtr - sizeof(Region)));
info.keepcost = region_is_free(lastActualRegion) ? lastActualRegion->size : 0;
RootRegion *root = listOfAllRegions;
while (root) {
Region *r = (Region*)root;
assert(debug_region_is_consistent(r));
uint8_t *lastRegionEnd = root->endPtr;
while ((uint8_t*)r < lastRegionEnd) {
assert(debug_region_is_consistent(r));
if (region_is_free(r)) {
// Count only the payload of the free block towards free memory.
info.fordblks += region_payload_end_ptr(r) - region_payload_start_ptr(r);
// But the header data of the free block goes towards used memory.
info.uordblks += REGION_HEADER_SIZE;
} else {
info.uordblks += r->size;
}
// Update approximate watermark data
info.usmblks = MAX(info.usmblks, (intptr_t)r + r->size);
if (r->size == 0) {
break;
}
r = next_region(r);
}
root = root->next;
}
MALLOC_RELEASE();
return info;
}
EMMALLOC_ALIAS(mallinfo, emmalloc_mallinfo);
#if 0
// Note! This function is not fully multithreading safe: while this function is running, other threads should not be
// allowed to call sbrk()!
static int trim_dynamic_heap_reservation(size_t pad) {
ASSERT_MALLOC_IS_ACQUIRED();
if (!listOfAllRegions) {
return 0; // emmalloc is not controlling any dynamic memory at all - cannot release memory.
}
uint8_t *previousSbrkEndAddress = listOfAllRegions->endPtr;
assert(sbrk(0) == previousSbrkEndAddress);
size_t lastMemoryRegionSize = ((size_t*)previousSbrkEndAddress)[-1];
assert(lastMemoryRegionSize == 16); // // The last memory region should be a sentinel node of exactly 16 bytes in size.
Region *endSentinelRegion = (Region*)(previousSbrkEndAddress - sizeof(Region));
Region *lastActualRegion = prev_region(endSentinelRegion);
// Round padding up to multiple of 4 bytes to keep sbrk() and memory region alignment intact.
// Also have at least 8 bytes of payload so that we can form a full free region.
size_t newRegionSize = (size_t)ALIGN_UP(pad, 4);
if (pad > 0) {
newRegionSize += sizeof(Region) - (newRegionSize - pad);
}
if (!region_is_free(lastActualRegion) || lastActualRegion->size <= newRegionSize) {
return 0; // Last actual region is in use, or caller desired to leave more free memory intact than there is.
}
// This many bytes will be shrunk away.
size_t shrinkAmount = lastActualRegion->size - newRegionSize;
assert(HAS_ALIGNMENT(shrinkAmount, 4));
unlink_from_free_list(lastActualRegion);
// If pad == 0, we should delete the last free region altogether. If pad > 0,
// shrink the last free region to the desired size.
if (newRegionSize > 0) {
create_free_region(lastActualRegion, newRegionSize);
link_to_free_list(lastActualRegion);
}
// Recreate the sentinel region at the end of the last free region
endSentinelRegion = (Region*)((uint8_t*)lastActualRegion + newRegionSize);
create_used_region(endSentinelRegion, sizeof(Region));
// And update the size field of the whole region block.
listOfAllRegions->endPtr = (uint8_t*)endSentinelRegion + sizeof(Region);
// Finally call sbrk() to shrink the memory area.
void *oldSbrk = sbrk(-(intptr_t)shrinkAmount);
assert((intptr_t)oldSbrk != -1); // Shrinking with sbrk() should never fail.
assert(oldSbrk == previousSbrkEndAddress); // Another thread should not have raced to increase sbrk() on us!
// All successful, and we actually trimmed memory!
return 1;
}
#endif
int emmalloc_trim(size_t pad) {
// Reducing the size of the sbrk region is currently broken.
// See https://github.com/emscripten-core/emscripten/issues/23343
// And https://github.com/emscripten-core/emscripten/pull/13442
return 0;
/*
MALLOC_ACQUIRE();
int success = trim_dynamic_heap_reservation(pad);
MALLOC_RELEASE();
return success;
*/
}
EMMALLOC_ALIAS(malloc_trim, emmalloc_trim)
size_t emmalloc_dynamic_heap_size() {
size_t dynamicHeapSize = 0;
MALLOC_ACQUIRE();
RootRegion *root = listOfAllRegions;
while (root) {
dynamicHeapSize += root->endPtr - (uint8_t*)root;
root = root->next;
}
MALLOC_RELEASE();
return dynamicHeapSize;
}
size_t emmalloc_free_dynamic_memory() {
size_t freeDynamicMemory = 0;
int bucketIndex = 0;
MALLOC_ACQUIRE();
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed;
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
while (bucketMask) {
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
bucketIndex += indexAdd;
bucketMask >>= indexAdd;
for (Region *freeRegion = freeRegionBuckets[bucketIndex].next;
freeRegion != &freeRegionBuckets[bucketIndex];
freeRegion = freeRegion->next) {
freeDynamicMemory += freeRegion->size - REGION_HEADER_SIZE;
}
++bucketIndex;
bucketMask >>= 1;
}
MALLOC_RELEASE();
return freeDynamicMemory;
}
size_t emmalloc_compute_free_dynamic_memory_fragmentation_map(size_t freeMemorySizeMap[32]) {
memset((void*)freeMemorySizeMap, 0, sizeof(freeMemorySizeMap[0])*32);
size_t numFreeMemoryRegions = 0;
int bucketIndex = 0;
MALLOC_ACQUIRE();
BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed;
// Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
while (bucketMask) {
BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
bucketIndex += indexAdd;
bucketMask >>= indexAdd;
for (Region *freeRegion = freeRegionBuckets[bucketIndex].next;
freeRegion != &freeRegionBuckets[bucketIndex];
freeRegion = freeRegion->next) {
++numFreeMemoryRegions;
size_t freeDynamicMemory = freeRegion->size - REGION_HEADER_SIZE;
if (freeDynamicMemory > 0) {
++freeMemorySizeMap[31-__builtin_clz(freeDynamicMemory)];
} else {
++freeMemorySizeMap[0];
}
}
++bucketIndex;
bucketMask >>= 1;
}
MALLOC_RELEASE();
return numFreeMemoryRegions;
}
void emmalloc_dump_free_dynamic_memory_fragmentation_map() {
size_t freeMemorySizeMap[32];
size_t numFreeMemoryRegions = emmalloc_compute_free_dynamic_memory_fragmentation_map(freeMemorySizeMap);
printf("numFreeMemoryRegions: %zu\n", numFreeMemoryRegions);
for (int i = 0; i < 32; ++i) {
printf("Free memory regions of size [%llu,%llu[ bytes: %zu regions\n", 1ull<<i, 1ull<<(i+1), freeMemorySizeMap[i]);
}
}
size_t emmalloc_unclaimed_heap_memory(void) {
return emscripten_get_heap_max() - (size_t)sbrk(0);
}