| /* |
| This is an optimized C++ implemention of the Relooper algorithm originally |
| developed as part of Emscripten. This implementation includes optimizations |
| added since the original academic paper [1] was published about it, and is |
| written in an LLVM-friendly way with the goal of inclusion in upstream |
| LLVM. |
| |
| [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion (SPLASH '11). ACM, New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 http://doi.acm.org/10.1145/2048147.2048224 |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| |
| #ifdef __cplusplus |
| |
| #include <map> |
| #include <deque> |
| #include <set> |
| #include <list> |
| |
| struct Block; |
| struct Shape; |
| |
| // Info about a branching from one block to another |
| struct Branch { |
| enum FlowType { |
| Direct = 0, // We will directly reach the right location through other means, no need for continue or break |
| Break = 1, |
| Continue = 2, |
| Nested = 3 // This code is directly reached, but we must be careful to ensure it is nested in an if - it is not reached |
| // unconditionally, other code paths exist alongside it that we need to make sure do not intertwine |
| }; |
| Shape *Ancestor; // If not NULL, this shape is the relevant one for purposes of getting to the target block. We break or continue on it |
| Branch::FlowType Type; // If Ancestor is not NULL, this says whether to break or continue |
| bool Labeled; // If a break or continue, whether we need to use a label |
| const char *Condition; // The condition for which we branch. For example, "my_var == 1". Conditions are checked one by one. One of the conditions should have NULL as the condition, in which case it is the default |
| const char *Code; // If provided, code that is run right before the branch is taken. This is useful for phis |
| |
| Branch(const char *ConditionInit, const char *CodeInit=NULL); |
| ~Branch(); |
| |
| // Prints out the branch |
| void Render(Block *Target, bool SetLabel); |
| }; |
| |
| // like std::set, except that begin() -> end() iterates in the |
| // order that elements were added to the set (not in the order |
| // of operator<(T, T)) |
| template<typename T> |
| struct InsertOrderedSet |
| { |
| std::map<T, typename std::list<T>::iterator> Map; |
| std::list<T> List; |
| |
| typedef typename std::list<T>::iterator iterator; |
| iterator begin() { return List.begin(); } |
| iterator end() { return List.end(); } |
| |
| void erase(const T& val) { |
| auto it = Map.find(val); |
| if (it != Map.end()) { |
| List.erase(it->second); |
| Map.erase(it); |
| } |
| } |
| |
| void erase(iterator position) { |
| Map.erase(*position); |
| List.erase(position); |
| } |
| |
| // cheating a bit, not returning the iterator |
| void insert(const T& val) { |
| auto it = Map.find(val); |
| if (it == Map.end()) { |
| List.push_back(val); |
| Map.insert(std::make_pair(val, --List.end())); |
| } |
| } |
| |
| size_t size() const { return Map.size(); } |
| |
| void clear() { |
| Map.clear(); |
| List.clear(); |
| } |
| |
| size_t count(const T& val) const { return Map.count(val); } |
| |
| InsertOrderedSet() {} |
| InsertOrderedSet(const InsertOrderedSet& other) { |
| for (auto i : other.List) { |
| insert(i); // inserting manually creates proper iterators |
| } |
| } |
| InsertOrderedSet& operator=(const InsertOrderedSet& other) { |
| abort(); // TODO, watch out for iterators |
| } |
| }; |
| |
| // like std::map, except that begin() -> end() iterates in the |
| // order that elements were added to the map (not in the order |
| // of operator<(Key, Key)) |
| template<typename Key, typename T> |
| struct InsertOrderedMap |
| { |
| std::map<Key, typename std::list<std::pair<Key,T>>::iterator> Map; |
| std::list<std::pair<Key,T>> List; |
| |
| T& operator[](const Key& k) { |
| auto it = Map.find(k); |
| if (it == Map.end()) { |
| List.push_back(std::make_pair(k, T())); |
| auto e = --List.end(); |
| Map.insert(std::make_pair(k, e)); |
| return e->second; |
| } |
| return it->second->second; |
| } |
| |
| typedef typename std::list<std::pair<Key,T>>::iterator iterator; |
| iterator begin() { return List.begin(); } |
| iterator end() { return List.end(); } |
| |
| void erase(const Key& k) { |
| auto it = Map.find(k); |
| if (it != Map.end()) { |
| List.erase(it->second); |
| Map.erase(it); |
| } |
| } |
| |
| void erase(iterator position) { |
| erase(position->first); |
| } |
| |
| size_t size() const { return Map.size(); } |
| size_t count(const Key& k) const { return Map.count(k); } |
| |
| InsertOrderedMap() {} |
| InsertOrderedMap(InsertOrderedMap& other) { |
| abort(); // TODO, watch out for iterators |
| } |
| InsertOrderedMap& operator=(const InsertOrderedMap& other) { |
| abort(); // TODO, watch out for iterators |
| } |
| }; |
| |
| |
| typedef InsertOrderedSet<Block*> BlockSet; |
| typedef InsertOrderedMap<Block*, Branch*> BlockBranchMap; |
| |
| // Represents a basic block of code - some instructions that end with a |
| // control flow modifier (a branch, return or throw). |
| struct Block { |
| // Branches become processed after we finish the shape relevant to them. For example, |
| // when we recreate a loop, branches to the loop start become continues and are now |
| // processed. When we calculate what shape to generate from a set of blocks, we ignore |
| // processed branches. |
| // Blocks own the Branch objects they use, and destroy them when done. |
| BlockBranchMap BranchesOut; |
| BlockSet BranchesIn; |
| BlockBranchMap ProcessedBranchesOut; |
| BlockSet ProcessedBranchesIn; |
| Shape *Parent; // The shape we are directly inside |
| int Id; // A unique identifier, defined when added to relooper. Note that this uniquely identifies a *logical* block - if we split it, the two instances have the same content *and* the same Id |
| const char *Code; // The string representation of the code in this block. Owning pointer (we copy the input) |
| const char *BranchVar; // A variable whose value determines where we go; if this is not NULL, emit a switch on that variable |
| bool IsCheckedMultipleEntry; // If true, we are a multiple entry, so reaching us requires setting the label variable |
| |
| Block(const char *CodeInit, const char *BranchVarInit); |
| ~Block(); |
| |
| void AddBranchTo(Block *Target, const char *Condition, const char *Code=NULL); |
| |
| // Prints out the instructions code and branchings |
| void Render(bool InLoop); |
| }; |
| |
| // Represents a structured control flow shape, one of |
| // |
| // Simple: No control flow at all, just instructions. If several |
| // blocks, then |
| // |
| // Multiple: A shape with more than one entry. If the next block to |
| // be entered is among them, we run it and continue to |
| // the next shape, otherwise we continue immediately to the |
| // next shape. |
| // |
| // Loop: An infinite loop. |
| // |
| // Emulated: Control flow is managed by a switch in a loop. This |
| // is necessary in some cases, for example when control |
| // flow is not known until runtime (indirect branches, |
| // setjmp returns, etc.) |
| // |
| |
| struct SimpleShape; |
| struct LabeledShape; |
| struct MultipleShape; |
| struct LoopShape; |
| struct EmulatedShape; |
| |
| struct Shape { |
| int Id; // A unique identifier. Used to identify loops, labels are Lx where x is the Id. Defined when added to relooper |
| Shape *Next; // The shape that will appear in the code right after this one |
| Shape *Natural; // The shape that control flow gets to naturally (if there is Next, then this is Next) |
| |
| enum ShapeType { |
| Simple, |
| Multiple, |
| Loop, |
| Emulated |
| }; |
| ShapeType Type; |
| |
| Shape(ShapeType TypeInit) : Id(-1), Next(NULL), Type(TypeInit) {} |
| virtual ~Shape() {} |
| |
| virtual void Render(bool InLoop) = 0; |
| |
| static SimpleShape *IsSimple(Shape *It) { return It && It->Type == Simple ? (SimpleShape*)It : NULL; } |
| static MultipleShape *IsMultiple(Shape *It) { return It && It->Type == Multiple ? (MultipleShape*)It : NULL; } |
| static LoopShape *IsLoop(Shape *It) { return It && It->Type == Loop ? (LoopShape*)It : NULL; } |
| static LabeledShape *IsLabeled(Shape *It) { return IsMultiple(It) || IsLoop(It) ? (LabeledShape*)It : NULL; } |
| static EmulatedShape *IsEmulated(Shape *It) { return It && It->Type == Emulated ? (EmulatedShape*)It : NULL; } |
| }; |
| |
| struct SimpleShape : public Shape { |
| Block *Inner; |
| |
| SimpleShape() : Shape(Simple), Inner(NULL) {} |
| void Render(bool InLoop) override { |
| Inner->Render(InLoop); |
| if (Next) Next->Render(InLoop); |
| } |
| }; |
| |
| // A shape that may be implemented with a labeled loop. |
| struct LabeledShape : public Shape { |
| bool Labeled; // If we have a loop, whether it needs to be labeled |
| |
| LabeledShape(ShapeType TypeInit) : Shape(TypeInit), Labeled(false) {} |
| }; |
| |
| // Blocks with the same id were split and are identical, so we just care about ids in Multiple entries |
| typedef std::map<int, Shape*> IdShapeMap; |
| |
| struct MultipleShape : public LabeledShape { |
| IdShapeMap InnerMap; // entry block ID -> shape |
| int Breaks; // If we have branches on us, we need a loop (or a switch). This is a counter of requirements, |
| // if we optimize it to 0, the loop is unneeded |
| bool UseSwitch; // Whether to switch on label as opposed to an if-else chain |
| |
| MultipleShape() : LabeledShape(Multiple), Breaks(0), UseSwitch(false) {} |
| |
| void RenderLoopPrefix(); |
| void RenderLoopPostfix(); |
| |
| void Render(bool InLoop) override; |
| }; |
| |
| struct LoopShape : public LabeledShape { |
| Shape *Inner; |
| |
| LoopShape() : LabeledShape(Loop), Inner(NULL) {} |
| void Render(bool InLoop) override; |
| }; |
| |
| // TODO EmulatedShape is only partially functional. Currently it can be used for the |
| // entire set of blocks being relooped, but not subsets. |
| struct EmulatedShape : public LabeledShape { |
| Block *Entry; |
| BlockSet Blocks; |
| |
| EmulatedShape() : LabeledShape(Emulated) { Labeled = true; } |
| void Render(bool InLoop) override; |
| }; |
| |
| // Implements the relooper algorithm for a function's blocks. |
| // |
| // Usage: |
| // 1. Instantiate this struct. |
| // 2. Call AddBlock with the blocks you have. Each should already |
| // have its branchings in specified (the branchings out will |
| // be calculated by the relooper). |
| // 3. Call Render(). |
| // |
| // Implementation details: The Relooper instance has |
| // ownership of the blocks and shapes, and frees them when done. |
| struct Relooper { |
| std::deque<Block*> Blocks; |
| std::deque<Shape*> Shapes; |
| Shape *Root; |
| bool Emulate; |
| bool MinSize; |
| int BlockIdCounter; |
| int ShapeIdCounter; |
| |
| Relooper(); |
| ~Relooper(); |
| |
| void AddBlock(Block *New, int Id=-1); |
| |
| // Calculates the shapes |
| void Calculate(Block *Entry); |
| |
| // Renders the result. |
| void Render(); |
| |
| // Sets the global buffer all printing goes to. Must call this or MakeOutputBuffer. |
| // XXX: this is deprecated, see MakeOutputBuffer |
| static void SetOutputBuffer(char *Buffer, int Size); |
| |
| // Creates an internal output buffer. Must call this or SetOutputBuffer. Size is |
| // a hint for the initial size of the buffer, it can be resized later one demand. |
| // For that reason this is more recommended than SetOutputBuffer. |
| static void MakeOutputBuffer(int Size); |
| |
| static char *GetOutputBuffer(); |
| |
| // Sets asm.js mode on or off (default is off) |
| static void SetAsmJSMode(int On); |
| |
| // Sets whether we must emulate everything with switch-loop code |
| void SetEmulate(int E) { Emulate = E; } |
| |
| // Sets us to try to minimize size |
| void SetMinSize(bool MinSize_) { MinSize = MinSize_; } |
| }; |
| |
| typedef InsertOrderedMap<Block*, BlockSet> BlockBlockSetMap; |
| |
| #if DEBUG |
| struct Debugging { |
| static void Dump(BlockSet &Blocks, const char *prefix=NULL); |
| static void Dump(Shape *S, const char *prefix=NULL); |
| }; |
| #endif |
| |
| #endif // __cplusplus |
| |
| // C API - useful for binding to other languages |
| |
| #ifdef _WIN32 |
| #ifdef RELOOPERDLL_EXPORTS |
| #define RELOOPERDLL_API __declspec(dllexport) |
| #else |
| #define RELOOPERDLL_API __declspec(dllimport) |
| #endif |
| #else |
| #define RELOOPERDLL_API |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| RELOOPERDLL_API void rl_set_output_buffer(char *buffer, int size); |
| RELOOPERDLL_API void rl_make_output_buffer(int size); |
| RELOOPERDLL_API void rl_set_asm_js_mode(int on); |
| RELOOPERDLL_API void *rl_new_block(const char *text, const char *branch_var); |
| RELOOPERDLL_API void rl_delete_block(void *block); |
| RELOOPERDLL_API void rl_block_add_branch_to(void *from, void *to, const char *condition, const char *code); |
| RELOOPERDLL_API void *rl_new_relooper(); |
| RELOOPERDLL_API void rl_delete_relooper(void *relooper); |
| RELOOPERDLL_API void rl_relooper_add_block(void *relooper, void *block); |
| RELOOPERDLL_API void rl_relooper_calculate(void *relooper, void *entry); |
| RELOOPERDLL_API void rl_relooper_render(void *relooper); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |