| /* |
| * Copyright (C) 2011 Google Inc. All rights reserved. |
| * Copyright (C) 2025 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderFlexibleBox.h" |
| |
| #include "BaselineAlignment.h" |
| #include "FontBaseline.h" |
| #include "HitTestResult.h" |
| #include "InspectorInstrumentation.h" |
| #include "LayoutIntegrationCoverage.h" |
| #include "LayoutIntegrationFlexLayout.h" |
| #include "LayoutRepainter.h" |
| #include "LayoutUnit.h" |
| #include "RenderBlockInlines.h" |
| #include "RenderBoxInlines.h" |
| #include "RenderBoxModelObjectInlines.h" |
| #include "RenderChildIterator.h" |
| #include "RenderElementStyleInlines.h" |
| #include "RenderLayer.h" |
| #include "RenderLayoutState.h" |
| #include "RenderObjectEnums.h" |
| #include "RenderObjectInlines.h" |
| #include "RenderReplaced.h" |
| #include "RenderSVGRoot.h" |
| #include "RenderStyle+GettersInlines.h" |
| #include "RenderTable.h" |
| #include "RenderView.h" |
| #include "StyleComputedStyle+InitialInlines.h" |
| #include "StylePrimitiveNumericTypes+Evaluation.h" |
| #include "WritingMode.h" |
| #include <limits> |
| #include <wtf/MathExtras.h> |
| #include <wtf/SetForScope.h> |
| #include <wtf/TZoneMallocInlines.h> |
| #include <wtf/TypeCasts.h> |
| |
| namespace WebCore { |
| |
| WTF_MAKE_TZONE_ALLOCATED_IMPL(RenderFlexibleBox); |
| |
| RenderFlexibleBox::FlexLayoutItem::FlexLayoutItem(RenderBox& flexItem, LayoutUnit flexBaseContentSize, LayoutUnit mainAxisBorderAndPadding, LayoutUnit mainAxisMargin, std::pair<LayoutUnit, LayoutUnit> minMaxSizes, bool everHadLayout) |
| : renderer(flexItem) |
| , flexBaseContentSize(flexBaseContentSize) |
| , mainAxisBorderAndPadding(mainAxisBorderAndPadding) |
| , mainAxisMargin(mainAxisMargin) |
| , minMaxSizes(minMaxSizes) |
| , hypotheticalMainContentSize(constrainSizeByMinMax(flexBaseContentSize)) |
| , frozen(false) |
| , everHadLayout(everHadLayout) |
| { |
| ASSERT(!flexItem.isOutOfFlowPositioned()); |
| } |
| |
| LayoutUnit RenderFlexibleBox::FlexLayoutItem::hypotheticalMainAxisMarginBoxSize() const |
| { |
| return hypotheticalMainContentSize + mainAxisBorderAndPadding + mainAxisMargin; |
| } |
| |
| LayoutUnit RenderFlexibleBox::FlexLayoutItem::flexBaseMarginBoxSize() const |
| { |
| return flexBaseContentSize + mainAxisBorderAndPadding + mainAxisMargin; |
| } |
| |
| LayoutUnit RenderFlexibleBox::FlexLayoutItem::flexedMarginBoxSize() const |
| { |
| return flexedContentSize + mainAxisBorderAndPadding + mainAxisMargin; |
| } |
| |
| const RenderStyle& RenderFlexibleBox::FlexLayoutItem::style() const |
| { |
| return renderer->style(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::FlexLayoutItem::constrainSizeByMinMax(const LayoutUnit size) const |
| { |
| return std::max(minMaxSizes.first, std::min(size, minMaxSizes.second)); |
| } |
| |
| struct RenderFlexibleBox::LineState { |
| LineState(LayoutUnit crossAxisOffset, LayoutUnit crossAxisExtent, std::optional<BaselineAlignmentState> baselineAlignmentState, FlexLayoutItems&& flexLayoutItems) |
| : crossAxisOffset(crossAxisOffset) |
| , crossAxisExtent(crossAxisExtent) |
| , baselineAlignmentState(baselineAlignmentState) |
| , flexLayoutItems(flexLayoutItems) |
| { |
| } |
| |
| LayoutUnit crossAxisOffset; |
| LayoutUnit crossAxisExtent; |
| std::optional<BaselineAlignmentState> baselineAlignmentState; |
| FlexLayoutItems flexLayoutItems; |
| }; |
| |
| RenderFlexibleBox::RenderFlexibleBox(Type type, Element& element, RenderStyle&& style) |
| : RenderBlock(type, element, WTF::move(style), TypeFlag::IsFlexibleBox) |
| { |
| ASSERT(isRenderFlexibleBox()); |
| setChildrenInline(false); // All of our children must be block-level. |
| } |
| |
| RenderFlexibleBox::RenderFlexibleBox(Type type, Document& document, RenderStyle&& style) |
| : RenderBlock(type, document, WTF::move(style), TypeFlag::IsFlexibleBox) |
| { |
| ASSERT(isRenderFlexibleBox()); |
| setChildrenInline(false); // All of our children must be block-level. |
| } |
| |
| RenderFlexibleBox::~RenderFlexibleBox() = default; |
| |
| ASCIILiteral RenderFlexibleBox::renderName() const |
| { |
| return "RenderFlexibleBox"_s; |
| } |
| |
| void RenderFlexibleBox::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| auto addScrollbarWidth = [&]() { |
| LayoutUnit scrollbarWidth(scrollbarLogicalWidth()); |
| maxLogicalWidth += scrollbarWidth; |
| minLogicalWidth += scrollbarWidth; |
| }; |
| |
| if (shouldApplySizeOrInlineSizeContainment()) { |
| if (auto width = explicitIntrinsicInnerLogicalWidth()) { |
| minLogicalWidth = width.value(); |
| maxLogicalWidth = width.value(); |
| } |
| addScrollbarWidth(); |
| return; |
| } |
| |
| LayoutUnit flexItemMinWidth; |
| LayoutUnit flexItemMaxWidth; |
| bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(flexItemMinWidth, flexItemMaxWidth); |
| |
| // FIXME: We're ignoring flex-basis here and we shouldn't. We can't start |
| // honoring it though until the flex shorthand stops setting it to 0. See |
| // https://bugs.webkit.org/show_bug.cgi?id=116117 and |
| // https://crbug.com/240765. |
| size_t numItemsWithNormalLayout = 0; |
| for (RenderBox* flexItem = firstChildBox(); flexItem; flexItem = flexItem->nextSiblingBox()) { |
| if (flexItem->isOutOfFlowPositioned() || flexItem->isExcludedFromNormalLayout()) |
| continue; |
| ++numItemsWithNormalLayout; |
| |
| // Pre-layout orthogonal children in order to get a valid value for the preferred width. |
| if (writingMode().isOrthogonal(flexItem->writingMode())) |
| flexItem->layoutIfNeeded(); |
| |
| LayoutUnit margin = marginIntrinsicLogicalWidthForChild(*flexItem); |
| |
| LayoutUnit minPreferredLogicalWidth; |
| LayoutUnit maxPreferredLogicalWidth; |
| computeChildPreferredLogicalWidths(*flexItem, minPreferredLogicalWidth, maxPreferredLogicalWidth); |
| |
| minPreferredLogicalWidth += margin; |
| maxPreferredLogicalWidth += margin; |
| |
| if (!isColumnFlow()) { |
| maxLogicalWidth += maxPreferredLogicalWidth; |
| if (isMultiline()) { |
| // For multiline, the min preferred width is if you put a break between |
| // each item. |
| minLogicalWidth = std::max(minLogicalWidth, minPreferredLogicalWidth); |
| } else |
| minLogicalWidth += minPreferredLogicalWidth; |
| } else { |
| minLogicalWidth = std::max(minPreferredLogicalWidth, minLogicalWidth); |
| maxLogicalWidth = std::max(maxPreferredLogicalWidth, maxLogicalWidth); |
| } |
| } |
| |
| if (!isColumnFlow() && numItemsWithNormalLayout > 1) { |
| LayoutUnit inlineGapSize = (numItemsWithNormalLayout - 1) * computeGap(GapType::BetweenItems); |
| maxLogicalWidth += inlineGapSize; |
| if (!isMultiline()) |
| minLogicalWidth += inlineGapSize; |
| } |
| |
| maxLogicalWidth = std::max(minLogicalWidth, maxLogicalWidth); |
| |
| // Due to negative margins, it is possible that we calculated a negative |
| // intrinsic width. Make sure that we never return a negative width. |
| minLogicalWidth = std::max(0_lu, minLogicalWidth); |
| maxLogicalWidth = std::max(0_lu, maxLogicalWidth); |
| |
| if (hadExcludedChildren) { |
| minLogicalWidth = std::max(minLogicalWidth, flexItemMinWidth); |
| maxLogicalWidth = std::max(maxLogicalWidth, flexItemMaxWidth); |
| } |
| |
| addScrollbarWidth(); |
| } |
| |
| #define SET_OR_CLEAR_OVERRIDING_SIZE(box, SizeType, size) \ |
| { \ |
| if (size) \ |
| box.setOverridingBorderBoxLogical##SizeType(*size); \ |
| else \ |
| box.clearOverridingBorderBoxLogical##SizeType(); \ |
| } |
| |
| // RAII class which defines a scope in which overriding sizes of a box are either: |
| // 1) replaced by other size in one axis if size is specified |
| // 2) cleared in both axis if size == std::nullopt |
| // |
| // In any case the previous overriding sizes are restored on destruction (in case of |
| // not having a previous value it's simply cleared). |
| class OverridingSizesScope { |
| public: |
| enum class Axis { |
| Inline, |
| Block, |
| Both |
| }; |
| |
| OverridingSizesScope(RenderBox& box, Axis axis, std::optional<LayoutUnit> size = std::nullopt) |
| : m_box(box) |
| , m_axis(axis) |
| { |
| ASSERT(!size || (axis != Axis::Both)); |
| if (axis == Axis::Both || axis == Axis::Inline) { |
| m_previousOverridingBorderBoxLogicalWidth = box.overridingBorderBoxLogicalWidth(); |
| SET_OR_CLEAR_OVERRIDING_SIZE(m_box, Width, size); |
| } |
| if (axis == Axis::Both || axis == Axis::Block) { |
| m_previousOverridingBorderBoxLogicalHeight = box.overridingBorderBoxLogicalHeight(); |
| SET_OR_CLEAR_OVERRIDING_SIZE(m_box, Height, size); |
| } |
| } |
| ~OverridingSizesScope() |
| { |
| if (m_axis == Axis::Inline || m_axis == Axis::Both) |
| SET_OR_CLEAR_OVERRIDING_SIZE(m_box, Width, m_previousOverridingBorderBoxLogicalWidth); |
| |
| if (m_axis == Axis::Block || m_axis == Axis::Both) |
| SET_OR_CLEAR_OVERRIDING_SIZE(m_box, Height, m_previousOverridingBorderBoxLogicalHeight); |
| } |
| |
| private: |
| RenderBox& m_box; |
| Axis m_axis; |
| std::optional<LayoutUnit> m_previousOverridingBorderBoxLogicalWidth; |
| std::optional<LayoutUnit> m_previousOverridingBorderBoxLogicalHeight; |
| }; |
| |
| static void updateFlexItemDirtyBitsBeforeLayout(bool relayoutFlexItem, RenderBox& flexItem) |
| { |
| if (flexItem.isOutOfFlowPositioned()) |
| return; |
| |
| // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into |
| // an auto value. Add a method to determine this, so that we can avoid the relayout. |
| if (relayoutFlexItem || flexItem.hasRelativeLogicalHeight()) |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| } |
| |
| void RenderFlexibleBox::computeChildIntrinsicLogicalWidths(RenderBox& flexBoxChild, LayoutUnit& minPreferredLogicalWidth, LayoutUnit& maxPreferredLogicalWidth) const |
| { |
| // Children excluded from normal layout are handled here too (e.g. legend when fieldset is set to flex). |
| ASSERT(flexBoxChild.isFlexItem() || (flexBoxChild.parent() == this && flexBoxChild.isExcludedFromNormalLayout())); |
| |
| // If the item cross size should use the definite container cross size then set the overriding size now so |
| // the intrinsic sizes are properly computed in the presence of aspect ratios. The only exception is when |
| // we are both a flex item&container, because our parent might have already set our overriding size. |
| auto flexItemIntrinsicSizeComputation = SetForScope(m_inFlexItemIntrinsicWidthComputation, true); |
| if (flexItemCrossSizeShouldUseContainerCrossSize(flexBoxChild) && !isFlexItem()) { |
| auto axis = mainAxisIsFlexItemInlineAxis(flexBoxChild) ? OverridingSizesScope::Axis::Block : OverridingSizesScope::Axis::Inline; |
| OverridingSizesScope overridingSizeScope(flexBoxChild, axis, computeCrossSizeForFlexItemUsingContainerCrossSize(flexBoxChild)); |
| RenderBlock::computeChildIntrinsicLogicalWidths(flexBoxChild, minPreferredLogicalWidth, maxPreferredLogicalWidth); |
| return; |
| } |
| |
| OverridingSizesScope cleanOverridingSizesScope(flexBoxChild, OverridingSizesScope::Axis::Both); |
| RenderBlock::computeChildIntrinsicLogicalWidths(flexBoxChild, minPreferredLogicalWidth, maxPreferredLogicalWidth); |
| } |
| |
| std::optional<LayoutUnit> RenderFlexibleBox::firstLineBaseline() const |
| { |
| if ((isWritingModeRoot() && !isFlexItem()) || !m_numberOfFlexItemsOnFirstLine || shouldApplyLayoutContainment()) |
| return { }; |
| |
| CheckedPtr baselineFlexItem = flexItemForFirstBaseline(); |
| if (!baselineFlexItem) |
| return { }; |
| |
| auto baseline = std::optional<LayoutUnit> { }; |
| if (!isColumnFlow() && !mainAxisIsFlexItemInlineAxis(*baselineFlexItem)) |
| baseline = crossAxisExtentForFlexItem(*baselineFlexItem); |
| else if (isColumnFlow() && mainAxisIsFlexItemInlineAxis(*baselineFlexItem)) |
| baseline = mainAxisExtentForFlexItem(*baselineFlexItem); |
| else if (auto firstLineBaseline = baselineFlexItem->firstLineBaseline()) |
| baseline = firstLineBaseline; |
| else { |
| // FIXME: We should pass |direction| into firstLineBoxBaseline and stop bailing out if we're a writing mode root. |
| // This would also fix some cases where the flexbox is orthogonal to its container. |
| auto direction = isHorizontalWritingMode() ? LineDirection::Horizontal : LineDirection::Vertical; |
| auto flexboxWritingMode = style().writingMode(); |
| auto dominantBaseline = BaselineAlignmentState::dominantBaseline(flexboxWritingMode); |
| baseline = BaselineAlignmentState::synthesizedBaseline(*baselineFlexItem, dominantBaseline, flexboxWritingMode, direction, BaselineSynthesisEdge::BorderBox); |
| } |
| return (settings().subpixelInlineLayoutEnabled() ? LayoutUnit(baselineFlexItem->logicalTop()) : LayoutUnit(baselineFlexItem->logicalTop().toInt())) + *baseline; |
| } |
| |
| std::optional <LayoutUnit> RenderFlexibleBox::lastLineBaseline() const |
| { |
| if (isWritingModeRoot() || !m_numberOfFlexItemsOnLastLine || shouldApplyLayoutContainment()) |
| return { }; |
| |
| CheckedPtr baselineFlexItem = flexItemForLastBaseline(); |
| if (!baselineFlexItem) |
| return { }; |
| |
| auto baseline = std::optional<LayoutUnit> { }; |
| if (!isColumnFlow() && !mainAxisIsFlexItemInlineAxis(*baselineFlexItem)) |
| baseline = crossAxisExtentForFlexItem(*baselineFlexItem); |
| else if (isColumnFlow() && mainAxisIsFlexItemInlineAxis(*baselineFlexItem)) |
| baseline = mainAxisExtentForFlexItem(*baselineFlexItem); |
| else if (auto lastLineBaseline = baselineFlexItem->lastLineBaseline()) |
| baseline = lastLineBaseline; |
| else { |
| // FIXME: We should pass |direction| into firstLineBoxBaseline and stop bailing out if we're a writing mode root. |
| // This would also fix some cases where the flexbox is orthogonal to its container. |
| auto direction = isHorizontalWritingMode() ? LineDirection::Horizontal : LineDirection::Vertical; |
| auto flexboxWritingMode = style().writingMode(); |
| auto dominantBaseline = BaselineAlignmentState::dominantBaseline(flexboxWritingMode); |
| baseline = BaselineAlignmentState::synthesizedBaseline(*baselineFlexItem, dominantBaseline, flexboxWritingMode, direction, BaselineSynthesisEdge::BorderBox); |
| } |
| return (settings().subpixelInlineLayoutEnabled() ? LayoutUnit(baselineFlexItem->logicalTop()) : LayoutUnit(baselineFlexItem->logicalTop().toInt())) + *baseline; |
| } |
| |
| static const StyleContentAlignmentData& contentAlignmentNormalBehavior() |
| { |
| // The justify-content property applies along the main axis, but since |
| // flexing in the main axis is controlled by flex, stretch behaves as |
| // flex-start (ignoring the specified fallback alignment, if any). |
| // https://drafts.csswg.org/css-align/#distribution-flex |
| static const StyleContentAlignmentData normalBehavior = { ContentPosition::Normal, ContentDistribution::Stretch}; |
| return normalBehavior; |
| } |
| |
| void RenderFlexibleBox::styleDidChange(Style::Difference diff, const RenderStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| if (!oldStyle || diff != Style::DifferenceResult::Layout) |
| return; |
| |
| auto oldAlignItems = oldStyle->alignItems().resolve().position(); |
| auto newAlignItems = style().alignItems().resolve().position(); |
| auto alignItemsStretchChanged = (oldAlignItems == ItemPosition::Normal || oldAlignItems == ItemPosition::Stretch) != (newAlignItems == ItemPosition::Normal || newAlignItems == ItemPosition::Stretch); |
| for (auto& flexItem : childrenOfType<RenderBox>(*this)) { |
| // Flex items that were previously stretching need to be relayed out so we |
| // can compute new available cross axis space. This is only necessary for |
| // stretching since other alignment values don't change the size of the |
| // box. |
| if (alignItemsStretchChanged && flexItem.style().alignSelf().isAuto()) |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| } |
| } |
| |
| bool RenderFlexibleBox::hitTestChildren(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& adjustedLocation, HitTestAction hitTestAction) |
| { |
| if (hitTestAction != HitTestForeground) |
| return false; |
| |
| LayoutPoint scrolledOffset = hasNonVisibleOverflow() ? adjustedLocation - toLayoutSize(scrollPosition()) : adjustedLocation; |
| |
| // If collecting the children in reverse order is bad for performance, this Vector could be determined at layout time. |
| Vector<RenderBox*> reversedOrderIteratorForHitTesting; |
| for (auto* flexItem = m_orderIterator.first(); flexItem; flexItem = m_orderIterator.next()) { |
| if (flexItem->isOutOfFlowPositioned()) |
| continue; |
| reversedOrderIteratorForHitTesting.append(flexItem); |
| } |
| reversedOrderIteratorForHitTesting.reverse(); |
| |
| for (auto* flexItem : reversedOrderIteratorForHitTesting) { |
| if (flexItem->hasSelfPaintingLayer()) |
| continue; |
| auto location = flipForWritingModeForChild(*flexItem, scrolledOffset); |
| if (flexItem->hitTest(request, result, locationInContainer, location)) { |
| updateHitTestResult(result, flipForWritingMode(toLayoutPoint(locationInContainer.point() - adjustedLocation))); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void RenderFlexibleBox::layoutBlock(RelayoutChildren relayoutChildren, LayoutUnit) |
| { |
| ASSERT(needsLayout()); |
| |
| if (relayoutChildren == RelayoutChildren::No) { |
| auto simplifiedLayoutScope = SetForScope(m_inSimplifiedLayout, true); |
| if (simplifiedLayout()) |
| return; |
| } |
| |
| LayoutRepainter repainter(*this); |
| |
| resetLogicalHeightBeforeLayoutIfNeeded(); |
| m_relaidOutFlexItems.clear(); |
| |
| bool oldInLayout = m_inLayout; |
| m_inLayout = true; |
| |
| if (!style().marginTrim().isNone()) |
| initializeMarginTrimState(); |
| |
| if (recomputeLogicalWidth()) |
| relayoutChildren = RelayoutChildren::Yes; |
| |
| LayoutUnit previousHeight = logicalHeight(); |
| setLogicalHeight(borderAndPaddingLogicalHeight() + scrollbarLogicalHeight()); |
| { |
| LayoutStateMaintainer statePusher(*this, locationOffset(), isTransformed() || hasReflection() || writingMode().isBlockFlipped()); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| |
| m_numberOfFlexItemsOnFirstLine = { }; |
| m_numberOfFlexItemsOnLastLine = { }; |
| m_justifyContentStartOverflow = 0; |
| |
| beginUpdateScrollInfoAfterLayoutTransaction(); |
| |
| prepareOrderIteratorAndMargins(); |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. The same is true for ruby text. |
| // It doesn't get included in the normal layout process but is instead skipped. |
| layoutExcludedChildren(relayoutChildren); |
| |
| FlexItemFrameRects oldFlexItemRects; |
| appendFlexItemFrameRects(oldFlexItemRects); |
| |
| performFlexLayout(relayoutChildren); |
| |
| { |
| auto scrollbarLayout = SetForScope(m_inPostFlexUpdateScrollbarLayout, true); |
| endAndCommitUpdateScrollInfoAfterLayoutTransaction(); |
| } |
| |
| if (logicalHeight() != previousHeight) |
| relayoutChildren = RelayoutChildren::Yes; |
| |
| if (isDocumentElementRenderer()) |
| layoutOutOfFlowBoxes(RelayoutChildren::Yes); |
| else |
| layoutOutOfFlowBoxes(relayoutChildren); |
| |
| repaintFlexItemsDuringLayoutIfMoved(oldFlexItemRects); |
| // FIXME: css3/flexbox/repaint-rtl-column.html seems to repaint more overflow than it needs to. |
| computeOverflow(flippedContentBoxRect(), ComputeOverflowOptions::MarginsExtendContentArea); |
| // FIXME: Only the items at the edges should contribute to the content area. But this distinction only matters in some weird cases with extreme negative margins. |
| |
| updateDescendantTransformsAfterLayout(); |
| } |
| |
| updateLayerTransform(); |
| |
| // We have to reset this, because changes to our ancestors' style can affect |
| // this value. Also, this needs to be before we call updateAfterLayout, as |
| // that function may re-enter this one. |
| resetHasDefiniteHeight(); |
| |
| repainter.repaintAfterLayout(); |
| |
| m_inLayout = oldInLayout; |
| } |
| |
| void RenderFlexibleBox::appendFlexItemFrameRects(FlexItemFrameRects& flexItemFrameRects) |
| { |
| for (RenderBox* flexItem = m_orderIterator.first(); flexItem; flexItem = m_orderIterator.next()) { |
| if (!flexItem->isOutOfFlowPositioned()) |
| flexItemFrameRects.append(flexItem->frameRect()); |
| } |
| } |
| |
| void RenderFlexibleBox::repaintFlexItemsDuringLayoutIfMoved(const FlexItemFrameRects& oldFlexItemRects) |
| { |
| size_t index = 0; |
| for (RenderBox* flexItem = m_orderIterator.first(); flexItem; flexItem = m_orderIterator.next()) { |
| if (flexItem->isOutOfFlowPositioned()) |
| continue; |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (!selfNeedsLayout() && flexItem->checkForRepaintDuringLayout()) |
| flexItem->repaintDuringLayoutIfMoved(oldFlexItemRects[index]); |
| ++index; |
| } |
| ASSERT(index == oldFlexItemRects.size()); |
| } |
| |
| void RenderFlexibleBox::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& paintInfoForFlexItem, bool usePrintRect) |
| { |
| for (RenderBox* flexItem = m_orderIterator.first(); flexItem; flexItem = m_orderIterator.next()) { |
| if (!paintChild(*flexItem, paintInfo, paintOffset, paintInfoForFlexItem, usePrintRect, PaintAsInlineBlock)) |
| return; |
| } |
| } |
| |
| void RenderFlexibleBox::repositionLogicalHeightDependentFlexItems(FlexLineStates& lineStates, LayoutUnit gapBetweenLines) |
| { |
| LayoutUnit crossAxisStartEdge = lineStates.isEmpty() ? 0_lu : lineStates[0].crossAxisOffset; |
| // If we have a single line flexbox, the line height is all the available space. For flex-direction: row, |
| // this means we need to use the height, so we do this after calling updateLogicalHeight. |
| if (!isMultiline() && !lineStates.isEmpty()) |
| lineStates[0].crossAxisExtent = crossAxisContentExtent(); |
| |
| alignFlexLines(lineStates, gapBetweenLines); |
| |
| alignFlexItems(lineStates); |
| |
| if (isWrapReverse()) |
| flipForWrapReverse(lineStates, crossAxisStartEdge); |
| |
| // direction:rtl + flex-direction:column means the cross-axis direction is |
| // flipped. |
| flipForRightToLeftColumn(lineStates); |
| } |
| |
| bool RenderFlexibleBox::mainAxisIsFlexItemInlineAxis(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() == flexItem.isHorizontalWritingMode(); |
| } |
| |
| bool RenderFlexibleBox::isColumnFlow() const |
| { |
| return style().isColumnFlexDirection(); |
| } |
| |
| bool RenderFlexibleBox::isColumnOrRowReverse() const |
| { |
| return style().flexDirection() == FlexDirection::ColumnReverse || style().flexDirection() == FlexDirection::RowReverse; |
| } |
| |
| bool RenderFlexibleBox::isWrapReverse() const |
| { |
| return style().flexWrap() == FlexWrap::Reverse; |
| } |
| |
| bool RenderFlexibleBox::isHorizontalFlow() const |
| { |
| if (isHorizontalWritingMode()) |
| return !isColumnFlow(); |
| return isColumnFlow(); |
| } |
| |
| bool RenderFlexibleBox::isLeftToRightFlow() const |
| { |
| if (isColumnFlow()) |
| return writingMode().blockDirection() == FlowDirection::TopToBottom || writingMode().blockDirection() == FlowDirection::LeftToRight; |
| return writingMode().isLogicalLeftInlineStart() ^ (style().flexDirection() == FlexDirection::RowReverse); |
| } |
| |
| RenderFlexibleBox::Direction RenderFlexibleBox::crossAxisDirection() const |
| { |
| auto crossAxisDirection = style().isRowFlexDirection() ? writingMode().blockDirection() : writingMode().inlineDirection(); |
| switch (crossAxisDirection) { |
| case FlowDirection::TopToBottom: |
| return isWrapReverse() ? Direction::BottomToTop : Direction::TopToBottom; |
| case FlowDirection::BottomToTop: |
| return isWrapReverse() ? Direction::TopToBottom : Direction::BottomToTop; |
| case FlowDirection::LeftToRight: |
| return isWrapReverse() ? Direction::RightToLeft : Direction::LeftToRight; |
| case FlowDirection::RightToLeft: |
| return isWrapReverse() ? Direction::LeftToRight : Direction::RightToLeft; |
| default: |
| ASSERT_NOT_REACHED(); |
| return Direction::TopToBottom; |
| } |
| } |
| |
| bool RenderFlexibleBox::isMultiline() const |
| { |
| return style().flexWrap() != FlexWrap::NoWrap; |
| } |
| |
| // https://drafts.csswg.org/css-flexbox/#min-size-auto |
| bool RenderFlexibleBox::shouldApplyMinSizeAutoForFlexItem(const RenderBox& flexItem) const |
| { |
| auto minSize = minMainSizeLengthForFlexItem(flexItem); |
| // min, max and fit-content are equivalent to the automatic size for block sizes https://drafts.csswg.org/css-sizing-3/#valdef-width-min-content. |
| bool flexItemBlockSizeIsEquivalentToAutomaticSize = !mainAxisIsFlexItemInlineAxis(flexItem) && (minSize.isMinContent() || minSize.isMaxContent() || minSize.isFitContent()); |
| |
| auto computedOverflowIsNotScrollable = [this, &flexItem]() { |
| auto overflow = mainAxisOverflowForFlexItem(flexItem); |
| return overflow == Overflow::Visible || overflow == Overflow::Clip; |
| }; |
| |
| return (minSize.isAuto() || flexItemBlockSizeIsEquivalentToAutomaticSize) && computedOverflowIsNotScrollable(); |
| } |
| |
| bool RenderFlexibleBox::shouldApplyMinBlockSizeAutoForFlexItem(const RenderBox& flexItem) const |
| { |
| return !mainAxisIsFlexItemInlineAxis(flexItem) && shouldApplyMinSizeAutoForFlexItem(flexItem); |
| } |
| |
| Style::FlexBasis RenderFlexibleBox::flexBasisForFlexItem(const RenderBox& flexItem) const |
| { |
| auto flexBasis = flexItem.style().flexBasis(); |
| if (flexBasis.isAuto()) |
| flexBasis = preferredMainSizeLengthForFlexItem(flexItem).asFlexBasis(); |
| return flexBasis; |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisExtentForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.height() : flexItem.width(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::cachedFlexItemIntrinsicContentLogicalHeight(const RenderBox& flexItem) const |
| { |
| if (auto* renderReplaced = dynamicDowncast<RenderReplaced>(flexItem)) |
| return renderReplaced->intrinsicLogicalHeight(); |
| |
| if (m_intrinsicContentLogicalHeights.contains(flexItem)) |
| return m_intrinsicContentLogicalHeights.get(flexItem); |
| |
| return flexItem.contentBoxLogicalHeight(); |
| } |
| |
| void RenderFlexibleBox::setCachedFlexItemIntrinsicContentLogicalHeight(const RenderBox& flexItem, LayoutUnit height) |
| { |
| if (flexItem.isRenderReplaced()) |
| return; // Replaced elements know their intrinsic height already, so save space by not caching. |
| m_intrinsicContentLogicalHeights.set(flexItem, height); |
| } |
| |
| void RenderFlexibleBox::clearCachedFlexItemIntrinsicContentLogicalHeight(const RenderBox& flexItem) |
| { |
| if (flexItem.isRenderReplaced()) |
| return; // Replaced elements know their intrinsic height already, so nothing to do. |
| m_intrinsicContentLogicalHeights.remove(flexItem); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flexItemIntrinsicLogicalHeight(RenderBox& flexItem) const |
| { |
| // This should only be called if the logical height is the cross size |
| ASSERT(mainAxisIsFlexItemInlineAxis(flexItem)); |
| if (needToStretchFlexItemLogicalHeight(flexItem)) { |
| LayoutUnit flexItemContentHeight = cachedFlexItemIntrinsicContentLogicalHeight(flexItem); |
| LayoutUnit flexItemLogicalHeight = flexItemContentHeight + flexItem.scrollbarLogicalHeight() + flexItem.borderAndPaddingLogicalHeight(); |
| return flexItem.constrainLogicalHeightByMinMax(flexItemLogicalHeight, flexItemContentHeight); |
| } |
| return flexItem.logicalHeight(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flexItemIntrinsicLogicalWidth(RenderBox& flexItem) |
| { |
| // This should only be called if the logical width is the cross size |
| ASSERT(!mainAxisIsFlexItemInlineAxis(flexItem)); |
| if (flexItemCrossSizeIsDefinite(flexItem, flexItem.style().logicalWidth())) |
| return flexItem.logicalWidth(); |
| |
| LogicalExtentComputedValues values; |
| { |
| OverridingSizesScope cleanOverridingWidthScope(flexItem, OverridingSizesScope::Axis::Inline); |
| flexItem.computeLogicalWidth(values); |
| } |
| return values.extent; |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisIntrinsicExtentForFlexItem(RenderBox& flexItem) |
| { |
| return mainAxisIsFlexItemInlineAxis(flexItem) ? flexItemIntrinsicLogicalHeight(flexItem) : flexItemIntrinsicLogicalWidth(flexItem); |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisExtentForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.size().width() : flexItem.size().height(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisContentExtentForFlexItemIncludingScrollbar(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.contentBoxWidth() + flexItem.verticalScrollbarWidth() : flexItem.contentBoxHeight() + flexItem.horizontalScrollbarHeight(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisExtent() const |
| { |
| return isHorizontalFlow() ? size().height() : size().width(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisExtent() const |
| { |
| return isHorizontalFlow() ? size().width() : size().height(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisContentExtent() const |
| { |
| return isHorizontalFlow() ? contentBoxHeight() : contentBoxWidth(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisContentExtent(LayoutUnit contentLogicalHeight) |
| { |
| if (!isColumnFlow()) |
| return contentBoxLogicalWidth(); |
| |
| LayoutUnit borderPaddingAndScrollbar = borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); |
| LayoutUnit borderBoxLogicalHeight = contentLogicalHeight + borderPaddingAndScrollbar; |
| auto computedValues = computeLogicalHeight(borderBoxLogicalHeight, logicalTop()); |
| if (computedValues.extent == LayoutUnit::max()) |
| return computedValues.extent; |
| return std::max(0_lu, computedValues.extent - borderPaddingAndScrollbar); |
| } |
| |
| // FIXME: consider adding this check to RenderBox::hasIntrinsicAspectRatio(). We could even make it |
| // virtual returning false by default. RenderReplaced will overwrite it with the current implementation |
| // plus this extra check. See wkb.ug/231955. |
| static bool isSVGRootWithIntrinsicAspectRatio(const RenderBox& flexItem) |
| { |
| if (!flexItem.isRenderOrLegacyRenderSVGRoot()) |
| return false; |
| // It's common for some replaced elements, such as SVGs, to have intrinsic aspect ratios but no intrinsic sizes. |
| // That's why it isn't enough just to check for intrinsic sizes in those cases. |
| return downcast<RenderReplaced>(flexItem).computeIntrinsicAspectRatio() > 0; |
| }; |
| |
| static bool flexItemHasAspectRatio(const RenderBox& flexItem) |
| { |
| return flexItem.hasIntrinsicAspectRatio() || flexItem.style().hasAspectRatio() || isSVGRootWithIntrinsicAspectRatio(flexItem); |
| } |
| |
| template<typename SizeType> std::optional<LayoutUnit> RenderFlexibleBox::computeMainAxisExtentForFlexItem(RenderBox& flexItem, const SizeType& size) |
| { |
| // If we have a horizontal flow, that means the main size is the width. |
| // That's the logical width for horizontal writing modes, and the logical |
| // height in vertical writing modes. For a vertical flow, main size is the |
| // height, so it's the inverse. So we need the logical width if we have a |
| // horizontal flow and horizontal writing mode, or vertical flow and vertical |
| // writing mode. Otherwise we need the logical height. |
| if (!mainAxisIsFlexItemInlineAxis(flexItem)) { |
| // We don't have to check for "auto" here - computeContentLogicalHeight |
| // will just return a null Optional for that case anyway. It's safe to access |
| // scrollbarLogicalHeight here because ComputeNextFlexLine will have |
| // already forced layout on the child. We previously did a layout out the child |
| // if necessary (see ComputeNextFlexLine and the call to |
| // flexItemHasIntrinsicMainAxisSize) so we can be sure that the two height |
| // calls here will return up-to-date data. |
| auto height = flexItem.computeContentLogicalHeight(size, cachedFlexItemIntrinsicContentLogicalHeight(flexItem)); |
| if (!height) |
| return height; |
| // Tables interpret overriding sizes as the size of captions + rows. However the specified height of a table |
| // only includes the size of the rows. That's why we need to add the size of the captions here so that the table |
| // layout algorithm behaves appropriately. |
| LayoutUnit captionsHeight; |
| if (CheckedPtr table = dynamicDowncast<RenderTable>(flexItem); table && flexItemMainSizeIsDefinite(flexItem, size)) |
| captionsHeight = table->sumCaptionsLogicalHeight(); |
| return *height + flexItem.scrollbarLogicalHeight() + captionsHeight; |
| } |
| |
| // computeLogicalWidth always re-computes the intrinsic widths. However, when |
| // our logical width is auto, we can just use our cached value. So let's do |
| // that here. (Compare code in RenderBlock::computePreferredLogicalWidths) |
| if (flexItem.style().logicalWidth().isAuto() && !flexItemHasAspectRatio(flexItem)) { |
| if (size.isMinContent()) { |
| if (flexItem.shouldInvalidatePreferredWidths()) |
| flexItem.setNeedsPreferredWidthsUpdate(MarkOnlyThis); |
| return flexItem.minPreferredLogicalWidth() - flexItem.borderAndPaddingLogicalWidth(); |
| } |
| if (size.isMaxContent()) { |
| if (flexItem.shouldInvalidatePreferredWidths()) |
| flexItem.setNeedsPreferredWidthsUpdate(MarkOnlyThis); |
| return flexItem.maxPreferredLogicalWidth() - flexItem.borderAndPaddingLogicalWidth(); |
| } |
| } |
| |
| auto mainAxisWidth = isColumnFlow() ? availableLogicalHeight(AvailableLogicalHeightType::ExcludeMarginBorderPadding) : contentBoxLogicalWidth(); |
| return flexItem.computeLogicalWidthUsing(size, mainAxisWidth, *this) - flexItem.borderAndPaddingLogicalWidth(); |
| } |
| |
| FlowDirection RenderFlexibleBox::transformedBlockFlowDirection() const |
| { |
| if (!isColumnFlow()) |
| return writingMode().blockDirection(); |
| return writingMode().inlineDirection(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareBorderStart() const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? borderLeft() : borderRight(); |
| return isLeftToRightFlow() ? borderTop() : borderBottom(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareBorderEnd() const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? borderRight() : borderLeft(); |
| return isLeftToRightFlow() ? borderBottom() : borderTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareBorderBefore() const |
| { |
| switch (transformedBlockFlowDirection()) { |
| case FlowDirection::TopToBottom: |
| return borderTop(); |
| case FlowDirection::BottomToTop: |
| return borderBottom(); |
| case FlowDirection::LeftToRight: |
| return borderLeft(); |
| case FlowDirection::RightToLeft: |
| return borderRight(); |
| } |
| ASSERT_NOT_REACHED(); |
| return borderTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareBorderAfter() const |
| { |
| switch (transformedBlockFlowDirection()) { |
| case FlowDirection::TopToBottom: |
| return borderBottom(); |
| case FlowDirection::BottomToTop: |
| return borderTop(); |
| case FlowDirection::LeftToRight: |
| return borderRight(); |
| case FlowDirection::RightToLeft: |
| return borderLeft(); |
| } |
| ASSERT_NOT_REACHED(); |
| return borderTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwarePaddingStart() const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? paddingLeft() : paddingRight(); |
| return isLeftToRightFlow() ? paddingTop() : paddingBottom(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwarePaddingEnd() const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? paddingRight() : paddingLeft(); |
| return isLeftToRightFlow() ? paddingBottom() : paddingTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwarePaddingBefore() const |
| { |
| switch (transformedBlockFlowDirection()) { |
| case FlowDirection::TopToBottom: |
| return paddingTop(); |
| case FlowDirection::BottomToTop: |
| return paddingBottom(); |
| case FlowDirection::LeftToRight: |
| return paddingLeft(); |
| case FlowDirection::RightToLeft: |
| return paddingRight(); |
| } |
| ASSERT_NOT_REACHED(); |
| return paddingTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwarePaddingAfter() const |
| { |
| switch (transformedBlockFlowDirection()) { |
| case FlowDirection::TopToBottom: |
| return paddingBottom(); |
| case FlowDirection::BottomToTop: |
| return paddingTop(); |
| case FlowDirection::LeftToRight: |
| return paddingRight(); |
| case FlowDirection::RightToLeft: |
| return paddingLeft(); |
| } |
| ASSERT_NOT_REACHED(); |
| return paddingTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareMarginStartForFlexItem(const RenderBox& flexItem) const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? flexItem.marginLeft() : flexItem.marginRight(); |
| return isLeftToRightFlow() ? flexItem.marginTop() : flexItem.marginBottom(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareMarginEndForFlexItem(const RenderBox& flexItem) const |
| { |
| if (isHorizontalFlow()) |
| return isLeftToRightFlow() ? flexItem.marginRight() : flexItem.marginLeft(); |
| return isLeftToRightFlow() ? flexItem.marginBottom() : flexItem.marginTop(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::flowAwareMarginBeforeForFlexItem(const RenderBox& flexItem) const |
| { |
| switch (transformedBlockFlowDirection()) { |
| case FlowDirection::TopToBottom: |
| return flexItem.marginTop(); |
| case FlowDirection::BottomToTop: |
| return flexItem.marginBottom(); |
| case FlowDirection::LeftToRight: |
| return flexItem.marginLeft(); |
| case FlowDirection::RightToLeft: |
| return flexItem.marginRight(); |
| } |
| ASSERT_NOT_REACHED(); |
| return marginTop(); |
| } |
| |
| void RenderFlexibleBox::initializeMarginTrimState() |
| { |
| // When computeIntrinsicLogicalWidth goes through each of the children, it |
| // will include the margins when computing the flexbox's min and max widths. |
| // We need to trim the margins of the first and last child early so that |
| // these margins do not incorrectly constribute to the box's min/max width |
| auto marginTrim = style().marginTrim(); |
| auto isRowsFlexbox = isHorizontalFlow(); |
| if (auto flexItem = firstInFlowChildBox(); flexItem && marginTrim.contains(Style::MarginTrimSide::InlineStart)) |
| isRowsFlexbox ? m_marginTrimItems.m_itemsAtFlexLineStart.add(*flexItem) : m_marginTrimItems.m_itemsOnFirstFlexLine.add(*flexItem); |
| if (auto flexItem = lastInFlowChildBox(); flexItem && marginTrim.contains(Style::MarginTrimSide::InlineEnd)) |
| isRowsFlexbox ? m_marginTrimItems.m_itemsAtFlexLineEnd.add(*flexItem) : m_marginTrimItems.m_itemsOnLastFlexLine.add(*flexItem); |
| } |
| |
| bool RenderFlexibleBox::canFitItemWithTrimmedMarginEnd(const FlexLayoutItem& flexLayoutItem, LayoutUnit sumHypotheticalMainSize, LayoutUnit lineBreakLength) const |
| { |
| auto marginTrim = style().marginTrim(); |
| if ((isHorizontalFlow() && marginTrim.contains(Style::MarginTrimSide::InlineEnd)) || (isColumnFlow() && marginTrim.contains(Style::MarginTrimSide::BlockEnd))) |
| return sumHypotheticalMainSize + flexLayoutItem.hypotheticalMainAxisMarginBoxSize() - flowAwareMarginEndForFlexItem(flexLayoutItem.renderer) <= lineBreakLength; |
| return false; |
| } |
| |
| void RenderFlexibleBox::removeMarginEndFromFlexSizes(FlexLayoutItem& flexLayoutItem, LayoutUnit& sumFlexBaseSize, LayoutUnit& sumHypotheticalMainSize) const |
| { |
| LayoutUnit margin; |
| if (isHorizontalFlow()) |
| margin = flexLayoutItem.renderer->marginEnd(writingMode()); |
| else |
| margin = flexLayoutItem.renderer->marginAfter(writingMode()); |
| sumFlexBaseSize -= margin; |
| sumHypotheticalMainSize -= margin; |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisMarginExtentForFlexItem(const RenderBox& flexItem) const |
| { |
| if (!flexItem.needsLayout()) |
| return isHorizontalFlow() ? flexItem.horizontalMarginExtent() : flexItem.verticalMarginExtent(); |
| |
| LayoutUnit marginStart; |
| LayoutUnit marginEnd; |
| if (isHorizontalFlow()) |
| flexItem.computeInlineDirectionMargins(*this, flexItem.containingBlockLogicalWidthForContent(), flexItem.logicalWidth(), { }, marginStart, marginEnd); |
| else |
| flexItem.computeBlockDirectionMargins(*this, marginStart, marginEnd); |
| return marginStart + marginEnd; |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisMarginExtentForFlexItem(const RenderBox& flexItem) const |
| { |
| if (!flexItem.needsLayout()) |
| return isHorizontalFlow() ? flexItem.verticalMarginExtent() : flexItem.horizontalMarginExtent(); |
| |
| LayoutUnit marginStart; |
| LayoutUnit marginEnd; |
| if (isHorizontalFlow()) |
| flexItem.computeBlockDirectionMargins(*this, marginStart, marginEnd); |
| else |
| flexItem.computeInlineDirectionMargins(*this, flexItem.containingBlockLogicalWidthForContent(), flexItem.logicalWidth(), { }, marginStart, marginEnd); |
| return marginStart + marginEnd; |
| } |
| |
| bool RenderFlexibleBox::isChildEligibleForMarginTrim(Style::MarginTrimSide marginTrimSide, const RenderBox& flexItem) const |
| { |
| ASSERT(style().marginTrim().contains(marginTrimSide)); |
| auto isMarginParallelWithMainAxis = [this](Style::MarginTrimSide marginTrimSide) { |
| if (isHorizontalFlow()) |
| return marginTrimSide == Style::MarginTrimSide::BlockStart || marginTrimSide == Style::MarginTrimSide::BlockEnd; |
| return marginTrimSide == Style::MarginTrimSide::InlineStart || marginTrimSide == Style::MarginTrimSide::InlineEnd; |
| }; |
| if (isMarginParallelWithMainAxis(marginTrimSide)) |
| return (marginTrimSide == Style::MarginTrimSide::BlockStart || marginTrimSide == Style::MarginTrimSide::InlineStart) ? m_marginTrimItems.m_itemsOnFirstFlexLine.contains(flexItem) : m_marginTrimItems.m_itemsOnLastFlexLine.contains(flexItem); |
| return (marginTrimSide == Style::MarginTrimSide::BlockStart || marginTrimSide == Style::MarginTrimSide::InlineStart) ? m_marginTrimItems.m_itemsAtFlexLineStart.contains(flexItem) : m_marginTrimItems.m_itemsAtFlexLineEnd.contains(flexItem); |
| } |
| |
| bool RenderFlexibleBox::shouldTrimMainAxisMarginStart() const |
| { |
| if (isHorizontalFlow()) |
| return style().marginTrim().contains(Style::MarginTrimSide::InlineStart); |
| return style().marginTrim().contains(Style::MarginTrimSide::BlockStart); |
| } |
| |
| bool RenderFlexibleBox::shouldTrimMainAxisMarginEnd() const |
| { |
| if (isHorizontalFlow()) |
| return style().marginTrim().contains(Style::MarginTrimSide::InlineEnd); |
| return style().marginTrim().contains(Style::MarginTrimSide::BlockEnd); |
| } |
| |
| bool RenderFlexibleBox::shouldTrimCrossAxisMarginStart() const |
| { |
| if (isHorizontalFlow()) |
| return style().marginTrim().contains(Style::MarginTrimSide::BlockStart); |
| return style().marginTrim().contains(Style::MarginTrimSide::InlineStart); |
| } |
| |
| bool RenderFlexibleBox::shouldTrimCrossAxisMarginEnd() const |
| { |
| if (isHorizontalFlow()) |
| return style().marginTrim().contains(Style::MarginTrimSide::BlockEnd); |
| return style().marginTrim().contains(Style::MarginTrimSide::InlineEnd); |
| } |
| |
| void RenderFlexibleBox::trimMainAxisMarginStart(const FlexLayoutItem& flexLayoutItem) |
| { |
| auto horizontalFlow = isHorizontalFlow(); |
| flexLayoutItem.mainAxisMargin -= horizontalFlow |
| ? flexLayoutItem.renderer->marginStart(writingMode()) |
| : flexLayoutItem.renderer->marginBefore(writingMode()); |
| if (horizontalFlow) |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::InlineStart); |
| else |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::BlockStart); |
| m_marginTrimItems.m_itemsAtFlexLineStart.add(flexLayoutItem.renderer); |
| } |
| |
| void RenderFlexibleBox::trimMainAxisMarginEnd(const FlexLayoutItem& flexLayoutItem) |
| { |
| auto horizontalFlow = isHorizontalFlow(); |
| flexLayoutItem.mainAxisMargin -= horizontalFlow |
| ? flexLayoutItem.renderer->marginEnd(writingMode()) |
| : flexLayoutItem.renderer->marginAfter(writingMode()); |
| if (horizontalFlow) |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::InlineEnd); |
| else |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::BlockEnd); |
| m_marginTrimItems.m_itemsAtFlexLineEnd.add(flexLayoutItem.renderer); |
| } |
| |
| void RenderFlexibleBox::trimCrossAxisMarginStart(const FlexLayoutItem& flexLayoutItem) |
| { |
| if (isHorizontalFlow()) |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::BlockStart); |
| else |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::InlineStart); |
| m_marginTrimItems.m_itemsOnFirstFlexLine.add(flexLayoutItem.renderer); |
| } |
| |
| void RenderFlexibleBox::trimCrossAxisMarginEnd(const FlexLayoutItem& flexLayoutItem) |
| { |
| if (isHorizontalFlow()) |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::BlockEnd); |
| else |
| setTrimmedMarginForChild(flexLayoutItem.renderer, Style::MarginTrimSide::InlineEnd); |
| m_marginTrimItems.m_itemsOnLastFlexLine.add(flexLayoutItem.renderer); |
| } |
| |
| LayoutUnit RenderFlexibleBox::crossAxisScrollbarExtent() const |
| { |
| return isHorizontalFlow() ? horizontalScrollbarHeight() : verticalScrollbarWidth(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::mainAxisScrollbarExtent() const |
| { |
| return isHorizontalFlow() ? verticalScrollbarWidth() : horizontalScrollbarHeight(); |
| } |
| |
| LayoutPoint RenderFlexibleBox::flowAwareLocationForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.location() : flexItem.location().transposedPoint(); |
| } |
| |
| const Style::PreferredSize& RenderFlexibleBox::preferredCrossSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().height() : flexItem.style().width(); |
| } |
| |
| const Style::MinimumSize& RenderFlexibleBox::minCrossSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().minHeight() : flexItem.style().minWidth(); |
| } |
| |
| const Style::MaximumSize& RenderFlexibleBox::maxCrossSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().maxHeight() : flexItem.style().maxWidth(); |
| } |
| |
| const Style::PreferredSize& RenderFlexibleBox::preferredMainSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().width() : flexItem.style().height(); |
| } |
| |
| const Style::MinimumSize& RenderFlexibleBox::minMainSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().minWidth() : flexItem.style().minHeight(); |
| } |
| |
| const Style::MaximumSize& RenderFlexibleBox::maxMainSizeLengthForFlexItem(const RenderBox& flexItem) const |
| { |
| return isHorizontalFlow() ? flexItem.style().maxWidth() : flexItem.style().maxHeight(); |
| } |
| |
| double RenderFlexibleBox::preferredAspectRatioForFlexItem(const RenderBox& flexItem) const |
| { |
| auto flexItemAspectRatio = [&] { |
| auto flexItemIntrinsicSize = LayoutSize { flexItem.intrinsicLogicalWidth(), flexItem.intrinsicLogicalHeight() }; |
| if (flexItem.isRenderOrLegacyRenderSVGRoot()) |
| return downcast<RenderReplaced>(flexItem).computeIntrinsicAspectRatio(); |
| if (flexItem.style().aspectRatio().isRatio() || (flexItem.style().aspectRatio().isAutoAndRatio() && flexItemIntrinsicSize.isEmpty())) |
| return flexItem.style().logicalAspectRatio(); |
| if (auto* replacedElement = dynamicDowncast<RenderReplaced>(flexItem)) |
| return replacedElement->computeIntrinsicAspectRatio(); |
| |
| ASSERT(flexItem.intrinsicLogicalHeight()); |
| return flexItem.intrinsicLogicalWidth().toDouble() / flexItem.intrinsicLogicalHeight().toDouble(); |
| }; |
| |
| if (mainAxisIsFlexItemInlineAxis(flexItem)) |
| return flexItemAspectRatio(); |
| return 1 / flexItemAspectRatio(); |
| } |
| |
| // FIXME: computeMainSizeFromAspectRatioUsing may need to return an std::optional<LayoutUnit> in the future |
| // rather than returning indefinite sizes as 0/-1. |
| template<typename SizeType> LayoutUnit RenderFlexibleBox::computeMainSizeFromAspectRatioUsing(const RenderBox& flexItem, const SizeType& crossSizeLength) const |
| { |
| ASSERT(flexItemHasAspectRatio(flexItem)); |
| |
| // `crossSize` is border-box size if box-sizing is border-box, and content-box otherwise. |
| |
| auto crossSizeOptional = WTF::switchOn(crossSizeLength, |
| [&](const SizeType::Fixed& fixedCrossSizeLength) -> std::optional<LayoutUnit> { |
| return LayoutUnit(fixedCrossSizeLength.resolveZoom(flexItem.style().usedZoomForLength())); |
| }, |
| [&](const SizeType::Percentage& percentageCrossSizeLength) -> std::optional<LayoutUnit> { |
| return mainAxisIsFlexItemInlineAxis(flexItem) |
| ? flexItem.computePercentageLogicalHeight(SizeType { percentageCrossSizeLength }) |
| : adjustBorderBoxLogicalWidthForBoxSizing(Style::evaluate<LayoutUnit>(percentageCrossSizeLength, contentBoxWidth())); |
| }, |
| [&](const SizeType::Calc& calcCrossSizeLength) -> std::optional<LayoutUnit> { |
| return mainAxisIsFlexItemInlineAxis(flexItem) |
| ? flexItem.computePercentageLogicalHeight(calcCrossSizeLength) |
| : adjustBorderBoxLogicalWidthForBoxSizing(Style::evaluate<LayoutUnit>(calcCrossSizeLength, contentBoxWidth(), flexItem.style().usedZoomForLength())); |
| }, |
| [&](const CSS::Keyword::Auto&) -> std::optional<LayoutUnit> { |
| ASSERT(flexItemCrossSizeShouldUseContainerCrossSize(flexItem)); |
| return computeCrossSizeForFlexItemUsingContainerCrossSize(flexItem); |
| }, |
| [&](const auto&) -> std::optional<LayoutUnit> { |
| ASSERT_NOT_REACHED(); |
| return { }; |
| } |
| ); |
| if (!crossSizeOptional) |
| return 0_lu; |
| |
| auto crossSize = *crossSizeOptional; |
| auto flexItemIntrinsicSize = flexItem.intrinsicSize(); |
| LayoutUnit borderAndPadding; |
| if (flexItem.style().aspectRatio().isRatio() || (flexItem.style().aspectRatio().isAutoAndRatio() && flexItemIntrinsicSize.isEmpty())) { |
| if (flexItem.style().boxSizingForAspectRatio() == BoxSizing::ContentBox) |
| crossSize -= isHorizontalFlow() ? flexItem.verticalBorderAndPaddingExtent() : flexItem.horizontalBorderAndPaddingExtent(); |
| else |
| borderAndPadding = isHorizontalFlow() ? flexItem.horizontalBorderAndPaddingExtent() : flexItem.verticalBorderAndPaddingExtent(); |
| } else { |
| // We need to subtract the border and padding extent from the cross axis. |
| // Furthermore, the sizing calculations that floor the content box size at zero when applying box-sizing are also ignored. |
| // https://drafts.csswg.org/css-flexbox/#algo-main-item. |
| if (flexItem.style().boxSizing() == BoxSizing::BorderBox) |
| crossSize -= isHorizontalFlow() ? flexItem.verticalBorderAndPaddingExtent() : flexItem.horizontalBorderAndPaddingExtent(); |
| } |
| |
| auto preferredAspectRatio = preferredAspectRatioForFlexItem(flexItem); |
| return std::max(0_lu, LayoutUnit(crossSize * preferredAspectRatio) - borderAndPadding); |
| } |
| |
| void RenderFlexibleBox::setFlowAwareLocationForFlexItem(RenderBox& flexItem, const LayoutPoint& location) |
| { |
| if (isHorizontalFlow()) |
| flexItem.setLocation(location); |
| else |
| flexItem.setLocation(location.transposedPoint()); |
| } |
| |
| template<typename SizeType> bool RenderFlexibleBox::canComputePercentageFlexBasis(const RenderBox& flexItem, const SizeType& flexBasis, UpdatePercentageHeightDescendants updateDescendants) |
| { |
| if (!isColumnFlow() || m_hasDefiniteHeight == SizeDefiniteness::Definite) |
| return true; |
| if (m_hasDefiniteHeight == SizeDefiniteness::Indefinite) |
| return false; |
| |
| auto isPercentResolveSuspended = view().frameView().layoutContext().isPercentHeightResolveDisabledFor(flexItem); |
| ASSERT(!isPercentResolveSuspended || is<RenderBlock>(flexItem)); |
| |
| bool definite = !isPercentResolveSuspended && flexItem.computePercentageLogicalHeight(flexBasis, updateDescendants).has_value(); |
| if (m_inLayout && (isHorizontalWritingMode() == flexItem.isHorizontalWritingMode())) { |
| // We can reach this code even while we're not laying ourselves out, such |
| // as from mainSizeForPercentageResolution. |
| m_hasDefiniteHeight = definite ? SizeDefiniteness::Definite : SizeDefiniteness::Indefinite; |
| } |
| return definite; |
| } |
| |
| template<typename SizeType> bool RenderFlexibleBox::flexItemMainSizeIsDefinite(const RenderBox& flexItem, const SizeType& size) |
| { |
| if constexpr (!std::same_as<SizeType, Style::MaximumSize>) { |
| if (size.isAuto()) |
| return false; |
| } |
| if constexpr (std::same_as<SizeType, Style::FlexBasis>) { |
| if (size.isContent()) |
| return false; |
| } |
| if (!mainAxisIsFlexItemInlineAxis(flexItem) && (size.isIntrinsic() || size.isIntrinsicKeyword())) |
| return false; |
| if (size.isPercentOrCalculated()) |
| return canComputePercentageFlexBasis(flexItem, size, UpdatePercentageHeightDescendants::No); |
| return true; |
| } |
| |
| bool RenderFlexibleBox::flexItemHasComputableAspectRatio(const RenderBox& flexItem) const |
| { |
| if (!flexItemHasAspectRatio(flexItem)) |
| return false; |
| return flexItem.intrinsicSize().height() || flexItem.style().hasAspectRatio() || isSVGRootWithIntrinsicAspectRatio(flexItem); |
| } |
| |
| bool RenderFlexibleBox::flexItemHasComputableAspectRatioAndCrossSizeIsConsideredDefinite(const RenderBox& flexItem) |
| { |
| return flexItemHasComputableAspectRatio(flexItem) |
| && (flexItemCrossSizeIsDefinite(flexItem, preferredCrossSizeLengthForFlexItem(flexItem)) || flexItemCrossSizeShouldUseContainerCrossSize(flexItem)); |
| } |
| |
| bool RenderFlexibleBox::flexItemCrossSizeShouldUseContainerCrossSize(const RenderBox& flexItem) const |
| { |
| // 9.8 https://drafts.csswg.org/css-flexbox/#definite-sizes |
| // 1. If a single-line flex container has a definite cross size, the automatic preferred outer cross size of any |
| // stretched flex items is the flex container's inner cross size (clamped to the flex item's min and max cross size) |
| // and is considered definite. |
| if (!isMultiline() && alignmentForFlexItem(flexItem) == ItemPosition::Stretch && !hasAutoMarginsInCrossAxis(flexItem) && preferredCrossSizeLengthForFlexItem(flexItem).isAuto()) { |
| if (isColumnFlow()) |
| return true; |
| // This must be kept in sync with computeMainSizeFromAspectRatioUsing(). |
| auto& crossSize = isHorizontalFlow() ? style().height() : style().width(); |
| return crossSize.isFixed() || (crossSize.isPercent() && availableLogicalHeightForPercentageComputation()); |
| } |
| return false; |
| } |
| |
| template<typename SizeType> bool RenderFlexibleBox::flexItemCrossSizeIsDefinite(const RenderBox& flexItem, const SizeType& size) |
| { |
| if constexpr (!std::same_as<SizeType, Style::MaximumSize>) { |
| if (size.isAuto()) |
| return false; |
| } |
| |
| if (size.isPercentOrCalculated()) { |
| if (!mainAxisIsFlexItemInlineAxis(flexItem) || m_hasDefiniteHeight == SizeDefiniteness::Definite) |
| return true; |
| if (m_hasDefiniteHeight == SizeDefiniteness::Indefinite) |
| return false; |
| bool definite = bool(flexItem.computePercentageLogicalHeight(size)); |
| m_hasDefiniteHeight = definite ? SizeDefiniteness::Definite : SizeDefiniteness::Indefinite; |
| return definite; |
| } |
| // FIXME: Eventually we should support other types of sizes here. |
| // Requires updating computeMainSizeFromAspectRatioUsing. |
| return size.isFixed(); |
| } |
| |
| void RenderFlexibleBox::cacheFlexItemMainSize(const RenderBox& flexItem) |
| { |
| ASSERT(!flexItem.needsLayout()); |
| ASSERT(!mainAxisIsFlexItemInlineAxis(flexItem)); |
| |
| auto mainSize = [&] { |
| auto flexBasis = flexBasisForFlexItem(flexItem); |
| if (flexBasis.isPercentOrCalculated() && !flexItemMainSizeIsDefinite(flexItem, flexBasis)) |
| return cachedFlexItemIntrinsicContentLogicalHeight(flexItem) + flexItem.borderAndPaddingLogicalHeight() + flexItem.scrollbarLogicalHeight(); |
| return flexItem.logicalHeight(); |
| }; |
| |
| m_intrinsicSizeAlongMainAxis.set(flexItem, mainSize()); |
| m_relaidOutFlexItems.add(flexItem); |
| } |
| |
| void RenderFlexibleBox::clearCachedMainSizeForFlexItem(const RenderBox& flexItem) |
| { |
| m_intrinsicSizeAlongMainAxis.remove(flexItem); |
| } |
| |
| // This is a RAII class that is used to temporarily set the flex basis as the child size in the main axis. |
| class ScopedFlexBasisAsFlexItemMainSize { |
| public: |
| ScopedFlexBasisAsFlexItemMainSize(RenderBox& flexItem, Style::PreferredSize&& flexBasis, bool mainAxisIsInlineAxis) |
| : m_flexItem(flexItem) |
| , m_mainAxisIsInlineAxis(mainAxisIsInlineAxis) |
| { |
| if (flexBasis.isAuto()) |
| return; |
| |
| if (m_mainAxisIsInlineAxis) |
| m_flexItem.setOverridingBorderBoxLogicalWidthForFlexBasisComputation(WTF::move(flexBasis)); |
| else |
| m_flexItem.setOverridingBorderBoxLogicalHeightForFlexBasisComputation(WTF::move(flexBasis)); |
| m_didOverride = true; |
| } |
| |
| ~ScopedFlexBasisAsFlexItemMainSize() |
| { |
| if (!m_didOverride) |
| return; |
| |
| if (m_mainAxisIsInlineAxis) |
| m_flexItem.clearOverridingLogicalWidthForFlexBasisComputation(); |
| else |
| m_flexItem.clearOverridingLogicalHeightForFlexBasisComputation(); |
| } |
| |
| private: |
| RenderBox& m_flexItem; |
| bool m_mainAxisIsInlineAxis { true }; |
| bool m_didOverride { false }; |
| }; |
| |
| // https://drafts.csswg.org/css-flexbox/#algo-main-item |
| LayoutUnit RenderFlexibleBox::computeFlexBaseSizeForFlexItem(RenderBox& flexItem, LayoutUnit mainAxisBorderAndPadding, RelayoutChildren relayoutChildren) |
| { |
| auto flexBasis = flexBasisForFlexItem(flexItem); |
| ScopedFlexBasisAsFlexItemMainSize scoped(flexItem, flexBasis.tryPreferredSize().value_or(Style::PreferredSize { CSS::Keyword::MaxContent { } }), mainAxisIsFlexItemInlineAxis(flexItem)); |
| // FIXME: While we are supposed to ignore min/max here, clients of maybeCacheFlexItemMainIntrinsicSize may expect min/max constrained size. |
| SetForScope<bool> computingBaseSizesScope(m_isComputingFlexBaseSizes, true); |
| |
| maybeCacheFlexItemMainIntrinsicSize(flexItem, relayoutChildren); |
| |
| // 9.2.3 A. |
| if (flexItemMainSizeIsDefinite(flexItem, flexBasis)) |
| return std::max(0_lu, computeMainAxisExtentForFlexItem(flexItem, flexBasis).value()); |
| |
| // 9.2.3 B. |
| if (flexItemHasComputableAspectRatioAndCrossSizeIsConsideredDefinite(flexItem)) { |
| auto& crossSizeLength = preferredCrossSizeLengthForFlexItem(flexItem); |
| return adjustFlexItemSizeForAspectRatioCrossAxisMinAndMax(flexItem, computeMainSizeFromAspectRatioUsing(flexItem, crossSizeLength)); |
| } |
| |
| // FIXME: 9.2.3 C. |
| // FIXME: 9.2.3 D. |
| |
| // 9.2.3 E. |
| LayoutUnit mainAxisExtent; |
| if (!mainAxisIsFlexItemInlineAxis(flexItem)) { |
| ASSERT(!flexItem.needsLayout()); |
| ASSERT(m_intrinsicSizeAlongMainAxis.contains(flexItem)); |
| mainAxisExtent = m_intrinsicSizeAlongMainAxis.get(flexItem); |
| } else { |
| // We don't need to add scrollbarLogicalWidth here because the preferred |
| // width includes the scrollbar, even for overflow: auto. |
| mainAxisExtent = flexItem.maxPreferredLogicalWidth(); |
| } |
| return mainAxisExtent - mainAxisBorderAndPadding; |
| } |
| |
| void RenderFlexibleBox::performFlexLayout(RelayoutChildren relayoutChildren) |
| { |
| if (layoutUsingFlexFormattingContext()) |
| return; |
| |
| // Set up our master list of flex items. All of the rest of the algorithm |
| // should work off this list of a subset. |
| // FIXME: That second part is not yet true. |
| FlexLayoutItems allItems; |
| for (auto* flexItem = m_orderIterator.first(); flexItem; flexItem = m_orderIterator.next()) { |
| if (m_orderIterator.shouldSkipChild(*flexItem)) { |
| // Out-of-flow children are not flex items, so we skip them here. |
| if (flexItem->isOutOfFlowPositioned()) |
| prepareFlexItemForPositionedLayout(*flexItem); |
| continue; |
| } |
| allItems.append(constructFlexLayoutItem(*flexItem, relayoutChildren)); |
| // constructFlexItem() might set the override containing block height so any value cached for definiteness might be incorrect. |
| resetHasDefiniteHeight(); |
| } |
| |
| if (allItems.isEmpty()) { |
| if (hasLineIfEmpty()) { |
| auto minHeight = borderAndPaddingLogicalHeight() + lineHeight() + scrollbarLogicalHeight(); |
| if (height() < minHeight) |
| setLogicalHeight(minHeight); |
| } |
| updateLogicalHeight(); |
| return; |
| } |
| |
| FlexLineStates lineStates; |
| const LayoutUnit lineBreakLength = mainAxisContentExtent(LayoutUnit::max()); |
| LayoutUnit gapBetweenItems = computeGap(GapType::BetweenItems); |
| LayoutUnit gapBetweenLines = computeGap(GapType::BetweenLines); |
| LayoutUnit crossAxisOffset = flowAwareBorderBefore() + flowAwarePaddingBefore(); |
| size_t nextIndex = 0; |
| size_t numLines = 0; |
| InspectorInstrumentation::flexibleBoxRendererBeganLayout(*this); |
| while (auto lineData = computeNextFlexLine(nextIndex, allItems, lineBreakLength, gapBetweenItems)) { |
| ++numLines; |
| InspectorInstrumentation::flexibleBoxRendererWrappedToNextLine(*this, nextIndex); |
| |
| auto& lineItems = lineData->lineItems; |
| |
| // Cross axis margins should only be trimmed if they are on the first/last flex line |
| auto shouldTrimCrossAxisStart = shouldTrimCrossAxisMarginStart() && !lineStates.size(); |
| auto shouldTrimCrossAxisEnd = shouldTrimCrossAxisMarginEnd() && allItems.last().renderer.ptr() == lineItems.last().renderer.ptr(); |
| if (shouldTrimCrossAxisStart || shouldTrimCrossAxisEnd) { |
| for (auto& flexLayoutItem : lineItems) { |
| if (shouldTrimCrossAxisStart) |
| trimCrossAxisMarginStart(flexLayoutItem); |
| if (shouldTrimCrossAxisEnd) |
| trimCrossAxisMarginEnd(flexLayoutItem); |
| } |
| } |
| auto containerMainInnerSize = mainAxisContentExtent(lineData->sumHypotheticalMainSize); |
| // availableFreeSpace is the initial amount of free space in this flexbox. |
| // remainingFreeSpace starts out at the same value but as we place and lay |
| // out flex items we subtract from it. Note that both values can be |
| // negative. |
| auto remainingFreeSpace = containerMainInnerSize - lineData->sumFlexBaseSize; |
| auto flexSign = (lineData->sumHypotheticalMainSize < containerMainInnerSize) ? FlexSign::PositiveFlexibility : FlexSign::NegativeFlexibility; |
| freezeInflexibleItems(flexSign, lineItems, remainingFreeSpace, lineData->totalFlexGrow, lineData->totalFlexShrink, lineData->totalWeightedFlexShrink); |
| // The initial free space gets calculated after freezing inflexible items. |
| // https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths step 3 |
| const LayoutUnit initialFreeSpace = remainingFreeSpace; |
| while (!resolveFlexibleLengths(flexSign, lineItems, initialFreeSpace, remainingFreeSpace, lineData->totalFlexGrow, lineData->totalFlexShrink, lineData->totalWeightedFlexShrink)) { |
| ASSERT(lineData->totalFlexGrow >= 0); |
| ASSERT(lineData->totalWeightedFlexShrink >= 0); |
| } |
| |
| // Recalculate the remaining free space. The adjustment for flex factors |
| // between 0..1 means we can't just use remainingFreeSpace here. |
| remainingFreeSpace = containerMainInnerSize; |
| for (size_t i = 0; i < lineItems.size(); ++i) { |
| auto& flexLayoutItem = lineItems[i]; |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| remainingFreeSpace -= flexLayoutItem.flexedMarginBoxSize(); |
| } |
| remainingFreeSpace -= (lineItems.size() - 1) * gapBetweenItems; |
| |
| // This will std::move lineItems into a newly-created LineState. |
| layoutAndPlaceFlexItems(crossAxisOffset, lineItems, remainingFreeSpace, relayoutChildren, lineStates, gapBetweenItems); |
| } |
| |
| if (!lineStates.isEmpty()) { |
| auto isWrapReverse = this->isWrapReverse(); |
| auto firstLineItemsCountInOriginalOrder = lineStates.first().flexLayoutItems.size(); |
| auto lastLineItemsCountInOriginalOrder = lineStates.first().flexLayoutItems.size(); |
| |
| m_numberOfFlexItemsOnFirstLine = !isWrapReverse ? firstLineItemsCountInOriginalOrder : lastLineItemsCountInOriginalOrder; |
| m_numberOfFlexItemsOnLastLine = !isWrapReverse ? lastLineItemsCountInOriginalOrder : firstLineItemsCountInOriginalOrder; |
| } |
| |
| if (hasLineIfEmpty()) { |
| // Even if computeNextFlexLine returns true, the flexbox might not have |
| // a line because all our children might be out of flow positioned. |
| // Instead of just checking if we have a line, make sure the flexbox |
| // has at least a line's worth of height to cover this case. |
| LayoutUnit minHeight = borderAndPaddingLogicalHeight() + lineHeight() + scrollbarLogicalHeight(); |
| if (size().height() < minHeight) |
| setLogicalHeight(minHeight); |
| } |
| |
| if (!isColumnFlow() && numLines > 1) |
| setLogicalHeight(logicalHeight() + computeGap(GapType::BetweenLines) * (numLines - 1)); |
| |
| updateLogicalHeight(); |
| repositionLogicalHeightDependentFlexItems(lineStates, gapBetweenLines); |
| } |
| |
| std::optional<RenderFlexibleBox::FlexingLineData> RenderFlexibleBox::computeNextFlexLine(size_t& nextIndex, const FlexLayoutItems& allItems, LayoutUnit lineBreakLength, LayoutUnit gapBetweenItems) |
| { |
| if (nextIndex >= allItems.size()) |
| return { }; |
| |
| FlexingLineData lineData; |
| // Trim main axis margin for item at the start of the flex line |
| if (nextIndex < allItems.size() && shouldTrimMainAxisMarginStart()) |
| trimMainAxisMarginStart(allItems[nextIndex]); |
| for (; nextIndex < allItems.size(); ++nextIndex) { |
| const auto& flexLayoutItem = allItems[nextIndex]; |
| auto& style = flexLayoutItem.style(); |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| if (isMultiline() && (lineData.sumHypotheticalMainSize + flexLayoutItem.hypotheticalMainAxisMarginBoxSize() > lineBreakLength && !canFitItemWithTrimmedMarginEnd(flexLayoutItem, lineData.sumHypotheticalMainSize, lineBreakLength)) && !lineData.lineItems.isEmpty()) |
| break; |
| lineData.lineItems.append(flexLayoutItem); |
| lineData.sumFlexBaseSize += flexLayoutItem.flexBaseMarginBoxSize() + gapBetweenItems; |
| lineData.totalFlexGrow += style.flexGrow().value; |
| lineData.totalFlexShrink += style.flexShrink().value; |
| lineData.totalWeightedFlexShrink += style.flexShrink().value * flexLayoutItem.flexBaseContentSize; |
| lineData.sumHypotheticalMainSize += flexLayoutItem.hypotheticalMainAxisMarginBoxSize() + gapBetweenItems; |
| } |
| |
| if (!lineData.lineItems.isEmpty()) { |
| // We added a gap after every item but there shouldn't be one after the last item, so subtract it here. Note that |
| // sums might be negative here due to negative margins in flex items. |
| lineData.sumHypotheticalMainSize -= gapBetweenItems; |
| lineData.sumFlexBaseSize -= gapBetweenItems; |
| } |
| |
| ASSERT(lineData.lineItems.size() > 0 || nextIndex == allItems.size()); |
| // Trim main axis margin for item at the end of the flex line |
| if (lineData.lineItems.size() && shouldTrimMainAxisMarginEnd()) { |
| auto lastItem = lineData.lineItems.last(); |
| removeMarginEndFromFlexSizes(lastItem, lineData.sumFlexBaseSize, lineData.sumHypotheticalMainSize); |
| trimMainAxisMarginEnd(lastItem); |
| } |
| return lineData; |
| } |
| |
| LayoutUnit RenderFlexibleBox::autoMarginOffsetInMainAxis(const FlexLayoutItems& flexLayoutItems, LayoutUnit& availableFreeSpace) |
| { |
| if (availableFreeSpace <= 0_lu) |
| return 0_lu; |
| |
| int numberOfAutoMargins = 0; |
| bool isHorizontal = isHorizontalFlow(); |
| for (auto& flexLayoutItem : flexLayoutItems) { |
| auto& flexItemStyle = flexLayoutItem.style(); |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| if (isHorizontal) { |
| if (flexItemStyle.marginLeft().isAuto()) |
| ++numberOfAutoMargins; |
| if (flexItemStyle.marginRight().isAuto()) |
| ++numberOfAutoMargins; |
| } else { |
| if (flexItemStyle.marginTop().isAuto()) |
| ++numberOfAutoMargins; |
| if (flexItemStyle.marginBottom().isAuto()) |
| ++numberOfAutoMargins; |
| } |
| } |
| if (!numberOfAutoMargins) |
| return 0_lu; |
| |
| LayoutUnit sizeOfAutoMargin = availableFreeSpace / numberOfAutoMargins; |
| availableFreeSpace = 0_lu; |
| return sizeOfAutoMargin; |
| } |
| |
| void RenderFlexibleBox::updateAutoMarginsInMainAxis(RenderBox& flexItem, LayoutUnit autoMarginOffset) |
| { |
| ASSERT(autoMarginOffset >= 0_lu); |
| |
| if (isHorizontalFlow()) { |
| if (flexItem.style().marginLeft().isAuto()) |
| flexItem.setMarginLeft(autoMarginOffset); |
| if (flexItem.style().marginRight().isAuto()) |
| flexItem.setMarginRight(autoMarginOffset); |
| } else { |
| if (flexItem.style().marginTop().isAuto()) |
| flexItem.setMarginTop(autoMarginOffset); |
| if (flexItem.style().marginBottom().isAuto()) |
| flexItem.setMarginBottom(autoMarginOffset); |
| } |
| } |
| |
| bool RenderFlexibleBox::hasAutoMarginsInCrossAxis(const RenderBox& flexItem) const |
| { |
| if (isHorizontalFlow()) |
| return flexItem.style().marginTop().isAuto() || flexItem.style().marginBottom().isAuto(); |
| return flexItem.style().marginLeft().isAuto() || flexItem.style().marginRight().isAuto(); |
| } |
| |
| LayoutUnit RenderFlexibleBox::availableAlignmentSpaceForFlexItem(LayoutUnit lineCrossAxisExtent, const RenderBox& flexItem) |
| { |
| LayoutUnit flexItemCrossExtent = crossAxisMarginExtentForFlexItem(flexItem) + crossAxisExtentForFlexItem(flexItem); |
| return lineCrossAxisExtent - flexItemCrossExtent; |
| } |
| |
| bool RenderFlexibleBox::updateAutoMarginsInCrossAxis(RenderBox& flexItem, LayoutUnit availableAlignmentSpace) |
| { |
| ASSERT(!flexItem.isOutOfFlowPositioned()); |
| ASSERT(availableAlignmentSpace >= 0_lu); |
| |
| bool isHorizontal = isHorizontalFlow(); |
| auto& topOrLeft = isHorizontal ? flexItem.style().marginTop() : flexItem.style().marginLeft(); |
| auto& bottomOrRight = isHorizontal ? flexItem.style().marginBottom() : flexItem.style().marginRight(); |
| if (topOrLeft.isAuto() && bottomOrRight.isAuto()) { |
| adjustAlignmentForFlexItem(flexItem, availableAlignmentSpace / 2); |
| if (isHorizontal) { |
| flexItem.setMarginTop(availableAlignmentSpace / 2); |
| flexItem.setMarginBottom(availableAlignmentSpace / 2); |
| } else { |
| flexItem.setMarginLeft(availableAlignmentSpace / 2); |
| flexItem.setMarginRight(availableAlignmentSpace / 2); |
| } |
| return true; |
| } |
| bool shouldAdjustTopOrLeft = true; |
| if (isColumnFlow() && flexItem.writingMode().isInlineFlipped()) { |
| // For column flows, only make this adjustment if topOrLeft corresponds to |
| // the "before" margin, so that flipForRightToLeftColumn will do the right |
| // thing. |
| shouldAdjustTopOrLeft = false; |
| } |
| if (!isColumnFlow() && flexItem.writingMode().isBlockFlipped()) { |
| // If we are a flipped writing mode, we need to adjust the opposite side. |
| // This is only needed for row flows because this only affects the |
| // block-direction axis. |
| shouldAdjustTopOrLeft = false; |
| } |
| |
| if (topOrLeft.isAuto()) { |
| if (shouldAdjustTopOrLeft) |
| adjustAlignmentForFlexItem(flexItem, availableAlignmentSpace); |
| |
| if (isHorizontal) |
| flexItem.setMarginTop(availableAlignmentSpace); |
| else |
| flexItem.setMarginLeft(availableAlignmentSpace); |
| return true; |
| } |
| |
| if (bottomOrRight.isAuto()) { |
| if (!shouldAdjustTopOrLeft) |
| adjustAlignmentForFlexItem(flexItem, availableAlignmentSpace); |
| |
| if (isHorizontal) |
| flexItem.setMarginBottom(availableAlignmentSpace); |
| else |
| flexItem.setMarginRight(availableAlignmentSpace); |
| return true; |
| } |
| return false; |
| } |
| |
| LayoutUnit RenderFlexibleBox::marginBoxAscentForFlexItem(const RenderBox& flexItem) |
| { |
| auto isHorizontalFlow = this->isHorizontalFlow(); |
| auto direction = isHorizontalFlow ? LineDirection::Horizontal : LineDirection::Vertical; |
| |
| if (!mainAxisIsFlexItemInlineAxis(flexItem)) { |
| auto flexboxWritingMode = style().writingMode(); |
| auto alignmentContextAxis = style().isRowFlexDirection() ? LogicalBoxAxis::Inline : LogicalBoxAxis::Block; |
| auto writingModeForSynthesis = BaselineAlignmentState::usedWritingModeForBaselineAlignment(alignmentContextAxis, flexboxWritingMode, flexItem.writingMode()); |
| return BaselineAlignmentState::synthesizedBaseline(flexItem, BaselineAlignmentState::dominantBaseline(flexboxWritingMode), |
| writingModeForSynthesis, direction, BaselineSynthesisEdge::BorderBox) + flowAwareMarginBeforeForFlexItem(flexItem); |
| } |
| auto ascent = alignmentForFlexItem(flexItem) == ItemPosition::LastBaseline ? flexItem.lastLineBaseline() : flexItem.firstLineBaseline(); |
| if (!ascent) { |
| auto flexboxWritingMode = style().writingMode(); |
| return BaselineAlignmentState::synthesizedBaseline(flexItem, BaselineAlignmentState::dominantBaseline(flexboxWritingMode), |
| flexboxWritingMode, direction, BaselineSynthesisEdge::BorderBox) + flowAwareMarginBeforeForFlexItem(flexItem); |
| } |
| |
| if (!flexItem.writingMode().isBlockMatchingAny(writingMode())) { |
| // Baseline from flex item with opposite block direction needs to be resolved as if flex item had the same block direction. |
| // _____________________________ <- flex box top/left (e.g. writing-mode: vertical-rl) |
| // | __________________ | |
| // | | 20px | 80px |<-- flex item with vertical-lr (top is at visual left) |
| // | |<----->|<-------->| | |
| // | top baseline | | |
| // where computed baseline is 20px and resolved (as if flex item shares the block direction with flex box) is 80px. |
| ascent = flexItem.logicalHeight() - *ascent; |
| } |
| |
| if (isHorizontalFlow ? flexItem.isScrollContainerY() : flexItem.isScrollContainerX()) |
| return std::max(0_lu, std::min(*ascent, crossAxisExtentForFlexItem(flexItem))) + flowAwareMarginBeforeForFlexItem(flexItem); |
| return *ascent + flowAwareMarginBeforeForFlexItem(flexItem);; |
| } |
| |
| LayoutUnit RenderFlexibleBox::computeFlexItemMarginValue(const Style::MarginEdge& margin) |
| { |
| // When resolving the margins, we use the content size for resolving percent and calc (for percents in calc expressions) margins. |
| // Fortunately, percent margins are always computed with respect to the block's width, even for margin-top and margin-bottom. |
| return Style::evaluateMinimum<LayoutUnit>(margin, contentBoxLogicalWidth(), style().usedZoomForLength()); |
| } |
| |
| void RenderFlexibleBox::prepareOrderIteratorAndMargins() |
| { |
| OrderIteratorPopulator populator(m_orderIterator); |
| |
| for (auto& flexItem : childrenOfType<RenderBox>(*this)) { |
| if (!populator.collectChild(flexItem)) |
| continue; |
| |
| // Before running the flex algorithm, 'auto' has a margin of 0. |
| // Also, if we're not auto sizing, we don't do a layout that computes the start/end margins. |
| if (isHorizontalFlow()) { |
| flexItem.setMarginLeft(computeFlexItemMarginValue(flexItem.style().marginLeft())); |
| flexItem.setMarginRight(computeFlexItemMarginValue(flexItem.style().marginRight())); |
| } else { |
| flexItem.setMarginTop(computeFlexItemMarginValue(flexItem.style().marginTop())); |
| flexItem.setMarginBottom(computeFlexItemMarginValue(flexItem.style().marginBottom())); |
| } |
| } |
| } |
| |
| std::pair<LayoutUnit, LayoutUnit> RenderFlexibleBox::computeFlexItemMinMaxSizes(RenderBox& flexItem) |
| { |
| auto max = maxMainSizeLengthForFlexItem(flexItem); |
| std::optional<LayoutUnit> maxExtent = std::nullopt; |
| if (max.isSpecified() || max.isIntrinsic()) |
| maxExtent = computeMainAxisExtentForFlexItem(flexItem, max); |
| |
| auto min = minMainSizeLengthForFlexItem(flexItem); |
| // Intrinsic sizes in child's block axis are handled by the min-size:auto code path. |
| if (min.isSpecified() || (min.isIntrinsic() && mainAxisIsFlexItemInlineAxis(flexItem))) { |
| auto minExtent = computeMainAxisExtentForFlexItem(flexItem, min).value_or(0_lu); |
| // We must never return a min size smaller than the min preferred size for tables. |
| if (flexItem.isRenderTable() && mainAxisIsFlexItemInlineAxis(flexItem)) |
| minExtent = std::max(minExtent, flexItem.minPreferredLogicalWidth()); |
| return { minExtent, maxExtent.value_or(LayoutUnit::max()) }; |
| } |
| |
| if (shouldApplyMinSizeAutoForFlexItem(flexItem)) { |
| // FIXME: If the min value is expected to be valid here, we need to come up with a non optional version of computeMainAxisExtentForFlexItem and |
| // ensure it's valid through the virtual calls of computeIntrinsicLogicalContentHeightUsing. |
| LayoutUnit contentSize; |
| auto& flexItemCrossSizeLength = preferredCrossSizeLengthForFlexItem(flexItem); |
| |
| bool canComputeSizeThroughAspectRatio = flexItem.isRenderReplaced() && flexItemHasComputableAspectRatio(flexItem) && flexItemCrossSizeIsDefinite(flexItem, flexItemCrossSizeLength); |
| |
| if (canComputeSizeThroughAspectRatio) |
| contentSize = computeMainSizeFromAspectRatioUsing(flexItem, flexItemCrossSizeLength); |
| else |
| contentSize = computeMainAxisExtentForFlexItem(flexItem, Style::MinimumSize { CSS::Keyword::MinContent { } }).value_or(0_lu); |
| |
| if (flexItemHasAspectRatio(flexItem)) |
| contentSize = adjustFlexItemSizeForAspectRatioCrossAxisMinAndMax(flexItem, contentSize); |
| ASSERT(contentSize >= 0); |
| contentSize = std::min(contentSize, maxExtent.value_or(contentSize)); |
| |
| auto mainSize = preferredMainSizeLengthForFlexItem(flexItem); |
| if (flexItemMainSizeIsDefinite(flexItem, mainSize)) { |
| LayoutUnit resolvedMainSize = computeMainAxisExtentForFlexItem(flexItem, mainSize).value_or(0); |
| ASSERT(resolvedMainSize >= 0); |
| LayoutUnit specifiedSize = std::min(resolvedMainSize, maxExtent.value_or(resolvedMainSize)); |
| return { std::min(specifiedSize, contentSize), maxExtent.value_or(LayoutUnit::max()) }; |
| } |
| |
| if (flexItem.isRenderReplaced() && flexItemHasComputableAspectRatioAndCrossSizeIsConsideredDefinite(flexItem)) { |
| LayoutUnit transferredSize = computeMainSizeFromAspectRatioUsing(flexItem, flexItemCrossSizeLength); |
| transferredSize = adjustFlexItemSizeForAspectRatioCrossAxisMinAndMax(flexItem, transferredSize); |
| return { std::min(transferredSize, contentSize), maxExtent.value_or(LayoutUnit::max()) }; |
| } |
| |
| return { contentSize, maxExtent.value_or(LayoutUnit::max()) }; |
| } |
| |
| return { 0_lu, maxExtent.value_or(LayoutUnit::max()) }; |
| } |
| |
| bool RenderFlexibleBox::canUseFlexItemForPercentageResolution(const RenderBox& flexItem) |
| { |
| ASSERT(flexItem.isFlexItem()); |
| |
| auto canUseByLayoutPhase = [&] { |
| if (m_inFlexItemIntrinsicWidthComputation) |
| return flexItemCrossSizeShouldUseContainerCrossSize(flexItem) && !isFlexItem(); |
| |
| if (m_afterMainAxisItemSizing) { |
| // Final sizes for flex items are available only along the main axis. |
| // Percentages can be resolved only against those items when they are orthogonal to the flex container (i.e., their logical height is computed and final) |
| return !mainAxisIsFlexItemInlineAxis(flexItem); |
| } |
| |
| if (m_afterCrossAxisItemSizing) { |
| // Final sizes for flex items are known in both the main and cross directions, so it's fine to resolve percentage heights using those final values. |
| return true; |
| } |
| |
| if (m_inPostFlexUpdateScrollbarLayout) { |
| // We run layout on flex content _after_ performing flex layout (see endAndCommitUpdateScrollInfoAfterLayoutTransaction/updateScrollInfoAfterLayout). |
| // Final sizes for flex items are known in both the main and cross directions. |
| return true; |
| } |
| |
| if (m_inSimplifiedLayout) { |
| // While in simplified layout, we should only re-compute overflow and/or re-position out-of-flow boxes, some renderers (e.g. RenderReplaced and subclasses) |
| // currently ignore this optimization and run regular layout. |
| // Final sizes for flex items are known in both the main and cross directions, computed during previous layout(s). |
| return true; |
| } |
| |
| if (&flexItem == view().frameView().layoutContext().subtreeLayoutRoot()) |
| return !mainAxisIsFlexItemInlineAxis(flexItem); |
| |
| // Outside of layout (i.e. when using relative percentage positioning), base the decision on style. |
| return !m_inLayout; |
| }; |
| if (!canUseByLayoutPhase()) |
| return false; |
| |
| auto canUseByStyle = [&] { |
| if (mainAxisIsFlexItemInlineAxis(flexItem)) |
| return alignmentForFlexItem(flexItem) == ItemPosition::Stretch; |
| |
| if (flexItem.style().flexGrow() == Style::ComputedStyle::initialFlexGrow() && flexItem.style().flexShrink().isZero() && flexItemMainSizeIsDefinite(flexItem, flexBasisForFlexItem(flexItem))) |
| return true; |
| |
| return canComputePercentageFlexBasis(flexItem, Style::PreferredSize { 0_css_percentage }, UpdatePercentageHeightDescendants::Yes); |
| }; |
| return canUseByStyle(); |
| } |
| |
| // This method is only called whenever a descendant of a flex item wants to resolve a percentage in its |
| // block axis (logical height). The key here is that percentages should be generally resolved before the |
| // flex item is flexed, meaning that they shouldn't be recomputed once the flex item has been flexed. There |
| // are some exceptions though that are implemented here, like the case of fully inflexible items with |
| // definite flex-basis, or whenever the flex container has a definite main size. See |
| // https://drafts.csswg.org/css-flexbox/#definite-sizes for additional details. |
| std::optional<LayoutUnit> RenderFlexibleBox::usedFlexItemOverridingLogicalHeightForPercentageResolution(const RenderBox& flexItem) |
| { |
| return canUseFlexItemForPercentageResolution(flexItem) ? flexItem.overridingBorderBoxLogicalHeight() : std::nullopt; |
| } |
| |
| LayoutUnit RenderFlexibleBox::adjustFlexItemSizeForAspectRatioCrossAxisMinAndMax(const RenderBox& flexItem, LayoutUnit flexItemSize) |
| { |
| auto& crossMin = minCrossSizeLengthForFlexItem(flexItem); |
| auto& crossMax = maxCrossSizeLengthForFlexItem(flexItem); |
| |
| if (flexItemCrossSizeIsDefinite(flexItem, crossMax)) { |
| LayoutUnit maxValue = computeMainSizeFromAspectRatioUsing(flexItem, crossMax); |
| flexItemSize = std::min(maxValue, flexItemSize); |
| } |
| |
| if (flexItemCrossSizeIsDefinite(flexItem, crossMin)) { |
| LayoutUnit minValue = computeMainSizeFromAspectRatioUsing(flexItem, crossMin); |
| flexItemSize = std::max(minValue, flexItemSize); |
| } |
| |
| return flexItemSize; |
| } |
| |
| void RenderFlexibleBox::maybeCacheFlexItemMainIntrinsicSize(RenderBox& flexItem, RelayoutChildren relayoutChildren) |
| { |
| if (!flexItemHasIntrinsicMainAxisSize(flexItem)) |
| return; |
| |
| // If this condition is true, then computeMainAxisExtentForFlexItem will call |
| // flexItem.intrinsicContentLogicalHeight() and flexItem.scrollbarLogicalHeight(), |
| // so if the child has intrinsic min/max/preferred size, run layout on it now to make sure |
| // its logical height and scroll bars are up to date. |
| updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, flexItem); |
| // Don't resolve percentages in children. This is especially important for the min-height calculation, |
| // where we want percentages to be treated as auto. For flex-basis itself, this is not a problem because |
| // by definition we have an indefinite flex basis here and thus percentages should not resolve. |
| if (flexItem.needsLayout() || !m_intrinsicSizeAlongMainAxis.contains(flexItem)) { |
| auto percentResolveDisableScope = FlexPercentResolveDisabler { view().frameView().layoutContext(), flexItem }; |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| flexItem.layoutIfNeeded(); |
| cacheFlexItemMainSize(flexItem); |
| } |
| } |
| |
| RenderFlexibleBox::FlexLayoutItem RenderFlexibleBox::constructFlexLayoutItem(RenderBox& flexItem, RelayoutChildren relayoutChildren) |
| { |
| auto everHadLayout = flexItem.everHadLayout(); |
| flexItem.clearOverridingSize(); |
| if (CheckedPtr flexibleBox = dynamicDowncast<RenderFlexibleBox>(flexItem)) |
| flexibleBox->resetHasDefiniteHeight(); |
| |
| if (everHadLayout && flexItem.hasTrimmedMargin(std::optional<Style::MarginTrimSide> { })) |
| flexItem.clearTrimmedMarginsMarkings(); |
| |
| if (flexItem.shouldInvalidatePreferredWidths()) |
| flexItem.setNeedsPreferredWidthsUpdate(MarkOnlyThis); |
| |
| LayoutUnit borderAndPadding = isHorizontalFlow() ? flexItem.horizontalBorderAndPaddingExtent() : flexItem.verticalBorderAndPaddingExtent(); |
| LayoutUnit innerFlexBaseSize = computeFlexBaseSizeForFlexItem(flexItem, borderAndPadding, relayoutChildren); |
| LayoutUnit margin = isHorizontalFlow() ? flexItem.horizontalMarginExtent() : flexItem.verticalMarginExtent(); |
| return FlexLayoutItem(flexItem, innerFlexBaseSize, borderAndPadding, margin, computeFlexItemMinMaxSizes(flexItem), everHadLayout); |
| } |
| |
| void RenderFlexibleBox::freezeViolations(Vector<FlexLayoutItem*, 4>& violations, LayoutUnit& availableFreeSpace, double& totalFlexGrow, double& totalFlexShrink, double& totalWeightedFlexShrink) |
| { |
| for (size_t i = 0; i < violations.size(); ++i) { |
| ASSERT(!violations[i]->frozen); |
| auto& flexItemStyle = violations[i]->style(); |
| LayoutUnit flexItemSize = violations[i]->flexedContentSize; |
| availableFreeSpace -= flexItemSize - violations[i]->flexBaseContentSize; |
| totalFlexGrow -= flexItemStyle.flexGrow().value; |
| totalFlexShrink -= flexItemStyle.flexShrink().value; |
| totalWeightedFlexShrink -= flexItemStyle.flexShrink().value * violations[i]->flexBaseContentSize; |
| // totalWeightedFlexShrink can be negative when we exceed the precision of |
| // a double when we initially calcuate totalWeightedFlexShrink. We then |
| // subtract each child's weighted flex shrink with full precision, now |
| // leading to a negative result. See |
| // css3/flexbox/large-flex-shrink-assert.html |
| totalWeightedFlexShrink = std::max(totalWeightedFlexShrink, 0.0); |
| violations[i]->frozen = true; |
| } |
| } |
| |
| void RenderFlexibleBox::freezeInflexibleItems(FlexSign flexSign, FlexLayoutItems& flexLayoutItems, LayoutUnit& remainingFreeSpace, double& totalFlexGrow, double& totalFlexShrink, double& totalWeightedFlexShrink) |
| { |
| // Per https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths step 2, |
| // we freeze all items with a flex factor of 0 as well as those with a min/max |
| // size violation. |
| Vector<FlexLayoutItem*, 4> newInflexibleItems; |
| for (auto& flexLayoutItem : flexLayoutItems) { |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| ASSERT(!flexLayoutItem.frozen); |
| float flexFactor = (flexSign == FlexSign::PositiveFlexibility) ? flexLayoutItem.style().flexGrow().value : flexLayoutItem.style().flexShrink().value; |
| if (!flexFactor || (flexSign == FlexSign::PositiveFlexibility && flexLayoutItem.flexBaseContentSize > flexLayoutItem.hypotheticalMainContentSize) || (flexSign == FlexSign::NegativeFlexibility && flexLayoutItem.flexBaseContentSize < flexLayoutItem.hypotheticalMainContentSize)) { |
| flexLayoutItem.flexedContentSize = flexLayoutItem.hypotheticalMainContentSize; |
| newInflexibleItems.append(&flexLayoutItem); |
| } |
| } |
| freezeViolations(newInflexibleItems, remainingFreeSpace, totalFlexGrow, totalFlexShrink, totalWeightedFlexShrink); |
| } |
| |
| // Returns true if we successfully ran the algorithm and sized the flex items. |
| bool RenderFlexibleBox::resolveFlexibleLengths(FlexSign flexSign, FlexLayoutItems& flexLayoutItems, LayoutUnit initialFreeSpace, LayoutUnit& remainingFreeSpace, double& totalFlexGrow, double& totalFlexShrink, double& totalWeightedFlexShrink) |
| { |
| LayoutUnit totalViolation; |
| LayoutUnit usedFreeSpace; |
| Vector<FlexLayoutItem*, 4> minViolations; |
| Vector<FlexLayoutItem*, 4> maxViolations; |
| |
| double sumFlexFactors = (flexSign == FlexSign::PositiveFlexibility) ? totalFlexGrow : totalFlexShrink; |
| if (sumFlexFactors > 0 && sumFlexFactors < 1) { |
| LayoutUnit fractional(initialFreeSpace * sumFlexFactors); |
| if (fractional.abs() < remainingFreeSpace.abs()) |
| remainingFreeSpace = fractional; |
| } |
| |
| for (auto& flexLayoutItem : flexLayoutItems) { |
| // This check also covers out-of-flow children. |
| if (flexLayoutItem.frozen) |
| continue; |
| |
| auto& flexItemStyle = flexLayoutItem.style(); |
| LayoutUnit flexItemSize = flexLayoutItem.flexBaseContentSize; |
| double extraSpace = 0; |
| if (remainingFreeSpace > 0 && totalFlexGrow > 0 && flexSign == FlexSign::PositiveFlexibility && std::isfinite(totalFlexGrow)) |
| extraSpace = remainingFreeSpace * flexItemStyle.flexGrow().value / totalFlexGrow; |
| else if (remainingFreeSpace < 0 && totalWeightedFlexShrink > 0 && flexSign == FlexSign::NegativeFlexibility && std::isfinite(totalWeightedFlexShrink) && !flexItemStyle.flexShrink().isZero()) |
| extraSpace = remainingFreeSpace * flexItemStyle.flexShrink().value * flexLayoutItem.flexBaseContentSize / totalWeightedFlexShrink; |
| if (std::isfinite(extraSpace)) |
| flexItemSize += LayoutUnit::fromFloatRound(extraSpace); |
| |
| LayoutUnit adjustedFlexItemSize = flexLayoutItem.constrainSizeByMinMax(flexItemSize); |
| ASSERT(adjustedFlexItemSize >= 0); |
| flexLayoutItem.flexedContentSize = adjustedFlexItemSize; |
| usedFreeSpace += adjustedFlexItemSize - flexLayoutItem.flexBaseContentSize; |
| |
| LayoutUnit violation = adjustedFlexItemSize - flexItemSize; |
| if (violation > 0) |
| minViolations.append(&flexLayoutItem); |
| else if (violation < 0) |
| maxViolations.append(&flexLayoutItem); |
| totalViolation += violation; |
| } |
| |
| if (totalViolation) |
| freezeViolations(totalViolation < 0 ? maxViolations : minViolations, remainingFreeSpace, totalFlexGrow, totalFlexShrink, totalWeightedFlexShrink); |
| else |
| remainingFreeSpace -= usedFreeSpace; |
| |
| return !totalViolation; |
| } |
| |
| inline ContentPosition resolveLeftRightAlignment(ContentPosition position, StyleContentAlignmentData justifyContent, const RenderStyle& style, bool isReversed) |
| { |
| if (position == ContentPosition::Left || position == ContentPosition::Right) { |
| auto leftRightAxisDirection = RenderFlexibleBox::leftRightAxisDirectionFromStyle(style); |
| position = (justifyContent.isEndward(leftRightAxisDirection, isReversed)) |
| ? ContentPosition::End : ContentPosition::Start; |
| } |
| return position; |
| } |
| |
| static LayoutUnit initialJustifyContentOffset(const RenderStyle& style, LayoutUnit availableFreeSpace, unsigned numberOfFlexItems, bool isReversed) |
| { |
| auto resolvedJustifyContent = style.justifyContent().resolve(contentAlignmentNormalBehavior()); |
| auto justifyContentPosition = resolvedJustifyContent.position(); |
| auto justifyContentDistribution = resolvedJustifyContent.distribution(); |
| |
| if (availableFreeSpace < 0 && resolvedJustifyContent.overflow() == OverflowAlignment::Safe) { |
| ASSERT(justifyContentPosition != ContentPosition::Normal); |
| justifyContentPosition = ContentPosition::Start; |
| } else { |
| // First of all resolve Left and Right so we could convert it to their equivalent properties handled bellow. |
| // If the property's axis is not parallel with either left<->right axis, this value behaves as start. Currently, |
| // the only case where the property's axis is not parallel with either left<->right axis is in a column flexbox. |
| // https: //www.w3.org/TR/css-align-3/#valdef-justify-content-left |
| justifyContentPosition = resolveLeftRightAlignment(justifyContentPosition, resolvedJustifyContent, style, isReversed); |
| } |
| |
| ASSERT(justifyContentPosition != ContentPosition::Left); |
| ASSERT(justifyContentPosition != ContentPosition::Right); |
| |
| if (justifyContentPosition == ContentPosition::FlexEnd |
| || (justifyContentPosition == ContentPosition::End && !isReversed) |
| || (justifyContentPosition == ContentPosition::Start && isReversed)) |
| return availableFreeSpace; |
| if (justifyContentPosition == ContentPosition::Center) |
| return availableFreeSpace / 2; |
| if (justifyContentDistribution == ContentDistribution::SpaceAround) { |
| if (!numberOfFlexItems) |
| return availableFreeSpace / 2; |
| if (availableFreeSpace > 0) |
| return availableFreeSpace / (2 * numberOfFlexItems); |
| return { }; |
| } |
| if (justifyContentDistribution == ContentDistribution::SpaceEvenly) { |
| if (!numberOfFlexItems) |
| return availableFreeSpace / 2; |
| if (availableFreeSpace > 0) |
| return availableFreeSpace / (numberOfFlexItems + 1); |
| return { }; |
| } |
| return { }; |
| } |
| |
| static LayoutUnit justifyContentSpaceBetweenFlexItems(LayoutUnit availableFreeSpace, ContentDistribution justifyContentDistribution, unsigned numberOfFlexItems) |
| { |
| if (availableFreeSpace > 0 && numberOfFlexItems > 1) { |
| if (justifyContentDistribution == ContentDistribution::SpaceBetween) |
| return availableFreeSpace / (numberOfFlexItems - 1); |
| if (justifyContentDistribution == ContentDistribution::SpaceAround) |
| return availableFreeSpace / numberOfFlexItems; |
| if (justifyContentDistribution == ContentDistribution::SpaceEvenly) |
| return availableFreeSpace / (numberOfFlexItems + 1); |
| } |
| return 0; |
| } |
| |
| static LayoutUnit alignmentOffset(LayoutUnit availableFreeSpace, ItemPosition position, std::optional<LayoutUnit> ascent, std::optional<LayoutUnit> maxAscent, bool isWrapReverse) |
| { |
| switch (position) { |
| case ItemPosition::Legacy: |
| case ItemPosition::Auto: |
| case ItemPosition::Normal: |
| ASSERT_NOT_REACHED(); |
| break; |
| case ItemPosition::Start: |
| case ItemPosition::End: |
| case ItemPosition::SelfStart: |
| case ItemPosition::SelfEnd: |
| case ItemPosition::Left: |
| case ItemPosition::Right: |
| ASSERT_NOT_REACHED("%u alignmentForFlexItem should have transformed this position value to something we handle below.", static_cast<uint8_t>(position)); |
| break; |
| case ItemPosition::Stretch: |
| // Actual stretching must be handled by the caller. Since wrap-reverse |
| // flips cross start and cross end, stretch children should be aligned |
| // with the cross end. This matters because applyStretchAlignment |
| // doesn't always stretch or stretch fully (explicit cross size given, or |
| // stretching constrained by max-height/max-width). For flex-start and |
| // flex-end this is handled by alignmentForFlexItem(). |
| if (isWrapReverse) |
| return availableFreeSpace; |
| break; |
| case ItemPosition::FlexStart: |
| break; |
| case ItemPosition::FlexEnd: |
| return availableFreeSpace; |
| case ItemPosition::Center: |
| case ItemPosition::AnchorCenter: |
| return availableFreeSpace / 2; |
| case ItemPosition::Baseline: |
| case ItemPosition::LastBaseline: |
| return maxAscent.value_or(0_lu) - ascent.value_or(0_lu); |
| } |
| return 0; |
| } |
| |
| void RenderFlexibleBox::setOverridingMainSizeForFlexItem(RenderBox& flexItem, LayoutUnit preferredSize) |
| { |
| if (mainAxisIsFlexItemInlineAxis(flexItem)) |
| flexItem.setOverridingBorderBoxLogicalWidth(preferredSize + flexItem.borderAndPaddingLogicalWidth()); |
| else |
| flexItem.setOverridingBorderBoxLogicalHeight(preferredSize + flexItem.borderAndPaddingLogicalHeight()); |
| } |
| |
| LayoutUnit RenderFlexibleBox::staticMainAxisPositionForPositionedFlexItem(const RenderBox& flexItem) |
| { |
| auto flexItemMainExtent = mainAxisMarginExtentForFlexItem(flexItem) + mainAxisExtentForFlexItem(flexItem); |
| auto availableSpace = mainAxisContentExtent(contentBoxLogicalHeight()) - flexItemMainExtent; |
| auto isReverse = isColumnOrRowReverse(); |
| LayoutUnit offset = initialJustifyContentOffset(style(), availableSpace, { }, isReverse); |
| if (isReverse) |
| offset = availableSpace - offset; |
| return offset; |
| } |
| |
| LayoutUnit RenderFlexibleBox::staticCrossAxisPositionForPositionedFlexItem(const RenderBox& flexItem) |
| { |
| auto availableSpace = availableAlignmentSpaceForFlexItem(crossAxisContentExtent(), flexItem); |
| auto safety = overflowAlignmentForFlexItem(flexItem); |
| auto align = alignmentForFlexItem(flexItem); |
| if (availableSpace < 0 && safety == OverflowAlignment::Safe) |
| align = ItemPosition::FlexStart; |
| return alignmentOffset(availableSpace, align, { }, { }, isWrapReverse()); |
| } |
| |
| LayoutUnit RenderFlexibleBox::staticInlinePositionForPositionedFlexItem(const RenderBox& flexItem) |
| { |
| return startOffsetForContent() + (isColumnFlow() ? staticCrossAxisPositionForPositionedFlexItem(flexItem) : staticMainAxisPositionForPositionedFlexItem(flexItem)); |
| } |
| |
| LayoutUnit RenderFlexibleBox::staticBlockPositionForPositionedFlexItem(const RenderBox& flexItem) |
| { |
| return borderAndPaddingBefore() + (isColumnFlow() ? staticMainAxisPositionForPositionedFlexItem(flexItem) : staticCrossAxisPositionForPositionedFlexItem(flexItem)); |
| } |
| |
| bool RenderFlexibleBox::setStaticPositionForPositionedLayout(const RenderBox& flexItem) |
| { |
| bool positionChanged = false; |
| CheckedPtr layer = flexItem.layer(); |
| if (flexItem.style().hasStaticInlinePosition(writingMode().isHorizontal())) { |
| LayoutUnit inlinePosition = staticInlinePositionForPositionedFlexItem(flexItem); |
| if (layer->staticInlinePosition() != inlinePosition) { |
| layer->setStaticInlinePosition(inlinePosition); |
| positionChanged = true; |
| } |
| } |
| if (flexItem.style().hasStaticBlockPosition(writingMode().isHorizontal())) { |
| LayoutUnit blockPosition = staticBlockPositionForPositionedFlexItem(flexItem); |
| if (layer->staticBlockPosition() != blockPosition) { |
| layer->setStaticBlockPosition(blockPosition); |
| positionChanged = true; |
| } |
| } |
| return positionChanged; |
| } |
| |
| // This refers to https://drafts.csswg.org/css-flexbox-1/#definite-sizes, section 1). |
| LayoutUnit RenderFlexibleBox::computeCrossSizeForFlexItemUsingContainerCrossSize(const RenderBox& flexItem) const |
| { |
| if (isColumnFlow()) |
| return contentBoxLogicalWidth(); |
| |
| // Keep this sync'ed with flexItemCrossSizeShouldUseContainerCrossSize(). |
| auto definiteSizeValue = [&] { |
| // Let's compute the definite size value for the flex item (value that we can resolve without running layout). |
| auto isHorizontal = isHorizontalFlow(); |
| auto size = isHorizontal ? style().height() : style().width(); |
| ASSERT(size.isFixed() || (size.isPercent() && availableLogicalHeightForPercentageComputation())); |
| LayoutUnit definiteValue; |
| if (auto fixedSize = size.tryFixed()) |
| definiteValue = LayoutUnit { fixedSize->resolveZoom(style().usedZoomForLength()) }; |
| else if (size.isPercent()) |
| definiteValue = availableLogicalHeightForPercentageComputation().value_or(0_lu); |
| |
| auto maximumSize = isHorizontal ? style().maxHeight() : style().maxWidth(); |
| if (auto fixedMaximumSize = maximumSize.tryFixed()) |
| definiteValue = std::min(definiteValue, LayoutUnit { fixedMaximumSize->resolveZoom(style().usedZoomForLength()) }); |
| |
| auto minimumSize = isHorizontal ? style().minHeight() : style().minWidth(); |
| if (auto fixedMinimumSize = minimumSize.tryFixed()) |
| definiteValue = std::max(definiteValue, LayoutUnit { fixedMinimumSize->resolveZoom(style().usedZoomForLength()) }); |
| |
| return definiteValue; |
| }; |
| return std::max(0_lu, definiteSizeValue() - crossAxisMarginExtentForFlexItem(flexItem)); |
| } |
| |
| void RenderFlexibleBox::prepareFlexItemForPositionedLayout(RenderBox& flexItem) |
| { |
| ASSERT(flexItem.isOutOfFlowPositioned()); |
| flexItem.containingBlock()->addOutOfFlowBox(flexItem); |
| CheckedPtr layer = flexItem.layer(); |
| LayoutUnit staticInlinePosition = flowAwareBorderStart() + flowAwarePaddingStart(); |
| if (layer->staticInlinePosition() != staticInlinePosition) { |
| layer->setStaticInlinePosition(staticInlinePosition); |
| if (flexItem.style().hasStaticInlinePosition(writingMode().isHorizontal())) |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| } |
| |
| LayoutUnit staticBlockPosition = flowAwareBorderBefore() + flowAwarePaddingBefore(); |
| if (layer->staticBlockPosition() != staticBlockPosition) { |
| layer->setStaticBlockPosition(staticBlockPosition); |
| if (flexItem.style().hasStaticBlockPosition(writingMode().isHorizontal())) |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| } |
| } |
| |
| inline OverflowAlignment RenderFlexibleBox::overflowAlignmentForFlexItem(const RenderBox& flexItem) const |
| { |
| return flexItem.style().alignSelf().resolve(&style()).overflow(); |
| } |
| |
| ItemPosition RenderFlexibleBox::alignmentForFlexItem(const RenderBox& flexItem) const |
| { |
| auto align = flexItem.style().alignSelf().resolve(&style()).position(); |
| if (align == ItemPosition::Normal) |
| align = ItemPosition::Stretch; |
| |
| ASSERT(align != ItemPosition::Auto && align != ItemPosition::Normal); |
| // Left and Right are only for justify-*. |
| ASSERT(align != ItemPosition::Left && align != ItemPosition::Right); |
| |
| // We can safely return here because start/end are not affected by a reversed flex-wrap because the |
| // alignment container is the flex line, and in a wrap reversed flex container the start and end within |
| // a flex line are still the same. Contrary to this flex-start/flex-end depend on the flex container |
| // start/end edges which are flipped in the case of wrap-reverse. |
| if (align == ItemPosition::Start) |
| return ItemPosition::FlexStart; |
| if (align == ItemPosition::End) |
| return ItemPosition::FlexEnd; |
| |
| if (align == ItemPosition::SelfStart || align == ItemPosition::SelfEnd) { |
| bool hasSameDirection = isHorizontalFlow() |
| ? writingMode().isAnyTopToBottom() == flexItem.writingMode().isAnyTopToBottom() |
| : writingMode().isAnyLeftToRight() == flexItem.writingMode().isAnyLeftToRight(); |
| return hasSameDirection == (align == ItemPosition::SelfStart) |
| ? ItemPosition::FlexStart : ItemPosition::FlexEnd; |
| } |
| |
| if (isWrapReverse()) { |
| if (align == ItemPosition::FlexStart) |
| align = ItemPosition::FlexEnd; |
| else if (align == ItemPosition::FlexEnd) |
| align = ItemPosition::FlexStart; |
| } |
| |
| return align; |
| } |
| |
| void RenderFlexibleBox::resetAutoMarginsAndLogicalTopInCrossAxis(RenderBox& flexItem) |
| { |
| if (hasAutoMarginsInCrossAxis(flexItem)) { |
| flexItem.updateLogicalHeight(); |
| if (isHorizontalFlow()) { |
| if (flexItem.style().marginTop().isAuto()) |
| flexItem.setMarginTop(0_lu); |
| if (flexItem.style().marginBottom().isAuto()) |
| flexItem.setMarginBottom(0_lu); |
| } else { |
| if (flexItem.style().marginLeft().isAuto()) |
| flexItem.setMarginLeft(0_lu); |
| if (flexItem.style().marginRight().isAuto()) |
| flexItem.setMarginRight(0_lu); |
| } |
| } |
| } |
| |
| bool RenderFlexibleBox::willStretchItem(const RenderBox& item, LogicalBoxAxis containingAxis, StretchingMode mode) const |
| { |
| auto physicalAxis = mapAxisLogicalToPhysical(writingMode(), containingAxis); |
| if (isHorizontalFlow() == (BoxAxis::Horizontal == physicalAxis)) |
| return false; |
| |
| auto& itemStyle = item.style(); |
| |
| if (!itemStyle.alignSelf().resolve(&style()).isStretchy(mode == StretchingMode::Explicit ? ItemPosition::Normal : ItemPosition::Stretch)) |
| return false; |
| |
| bool isItemBlockAxis = (LogicalBoxAxis::Block == containingAxis) == !writingMode().isOrthogonal(itemStyle.writingMode()); |
| return isItemBlockAxis |
| ? itemStyle.logicalHeight().isAuto() && !itemStyle.marginBefore().isAuto() && !itemStyle.marginAfter().isAuto() |
| : itemStyle.logicalWidth().isAuto() && !itemStyle.marginStart().isAuto() && !itemStyle.marginEnd().isAuto(); |
| } |
| |
| bool RenderFlexibleBox::needToStretchFlexItemLogicalHeight(const RenderBox& flexItem) const |
| { |
| // This function is a little bit magical. It relies on the fact that blocks |
| // intrinsically "stretch" themselves in their inline axis, i.e. a <div> has |
| // an implicit width: 100%. So the child will automatically stretch if our |
| // cross axis is the child's inline axis. That's the case if: |
| // - We are horizontal and the child is in vertical writing mode |
| // - We are vertical and the child is in horizontal writing mode |
| // Otherwise, we need to stretch if the cross axis size is auto. |
| if (alignmentForFlexItem(flexItem) != ItemPosition::Stretch) |
| return false; |
| |
| if (isHorizontalFlow() != flexItem.isHorizontalWritingMode()) |
| return false; |
| |
| // Aspect ratio is properly handled by RenderReplaced during layout. |
| if (flexItem.isRenderReplaced() && flexItemHasAspectRatio(flexItem)) |
| return false; |
| |
| return flexItem.style().logicalHeight().isAuto(); |
| } |
| |
| bool RenderFlexibleBox::flexItemHasIntrinsicMainAxisSize(const RenderBox& flexItem) |
| { |
| if (mainAxisIsFlexItemInlineAxis(flexItem)) |
| return false; |
| |
| auto flexBasis = flexBasisForFlexItem(flexItem); |
| auto minSize = minMainSizeLengthForFlexItem(flexItem); |
| auto maxSize = maxMainSizeLengthForFlexItem(flexItem); |
| // FIXME: we must run flexItemMainSizeIsDefinite() because it might end up calling computePercentageLogicalHeight() |
| // which has some side effects like calling addPercentHeightDescendant() for example so it is not possible to skip |
| // the call for example by moving it to the end of the conditional expression. This is error-prone and we should |
| // refactor computePercentageLogicalHeight() at some point so that it only computes stuff without those side effects. |
| if (!flexItemMainSizeIsDefinite(flexItem, flexBasis) || minSize.isIntrinsic() || maxSize.isIntrinsic()) |
| return true; |
| |
| if (shouldApplyMinSizeAutoForFlexItem(flexItem)) |
| return true; |
| |
| return false; |
| } |
| |
| Overflow RenderFlexibleBox::mainAxisOverflowForFlexItem(const RenderBox& flexItem) const |
| { |
| if (isHorizontalFlow()) |
| return flexItem.style().overflowX(); |
| return flexItem.style().overflowY(); |
| } |
| |
| Overflow RenderFlexibleBox::crossAxisOverflowForFlexItem(const RenderBox& flexItem) const |
| { |
| if (isHorizontalFlow()) |
| return flexItem.style().overflowY(); |
| return flexItem.style().overflowX(); |
| } |
| |
| bool RenderFlexibleBox::flexItemHasPercentHeightDescendants(const RenderBox& renderer) const |
| { |
| // FIXME: This function can be removed soon after webkit.org/b/204318 is fixed. Evaluate whether the |
| // skipContainingBlockForPercentHeightCalculation() check below should be moved to the caller in that case. |
| CheckedPtr renderBlock = dynamicDowncast<RenderBlock>(renderer); |
| if (!renderBlock) |
| return false; |
| |
| // FlexibleBoxImpl's like RenderButton might wrap their children in anonymous blocks. Those anonymous blocks are |
| // skipped for percentage height calculations in RenderBox::computePercentageLogicalHeight() and thus |
| // addPercentHeightDescendant() is never called for them. This means that this method would always wrongly |
| // return false for a child of a <button> with a percentage height. |
| if (hasPercentHeightDescendants() && skipContainingBlockForPercentHeightCalculation(renderer, isHorizontalWritingMode() != renderer.isHorizontalWritingMode())) { |
| for (auto& descendant : *percentHeightDescendants()) { |
| if (renderBlock->isContainingBlockAncestorFor(descendant)) |
| return true; |
| } |
| } |
| |
| if (!renderBlock->hasPercentHeightDescendants()) |
| return false; |
| |
| auto* percentHeightDescendants = renderBlock->percentHeightDescendants(); |
| if (!percentHeightDescendants) |
| return false; |
| |
| for (auto& descendant : *percentHeightDescendants) { |
| bool hasOutOfFlowAncestor = false; |
| for (auto* ancestor = descendant.containingBlock(); ancestor && ancestor != renderBlock.get(); ancestor = ancestor->containingBlock()) { |
| if (ancestor->isOutOfFlowPositioned()) { |
| hasOutOfFlowAncestor = true; |
| break; |
| } |
| } |
| if (!hasOutOfFlowAncestor) |
| return true; |
| } |
| return false; |
| } |
| |
| static LayoutUnit contentAlignmentStartOverflow(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistribution distribution, OverflowAlignment safety, bool isReverse) |
| { |
| if (availableFreeSpace >= 0 || safety == OverflowAlignment::Safe) |
| return 0_lu; |
| |
| if (distribution == ContentDistribution::SpaceAround |
| || distribution == ContentDistribution::SpaceEvenly) |
| return -availableFreeSpace / 2; |
| |
| switch (position) { |
| case ContentPosition::Start: |
| case ContentPosition::Baseline: |
| case ContentPosition::LastBaseline: |
| return 0_lu; |
| case ContentPosition::FlexStart: |
| return isReverse ? -availableFreeSpace : 0_lu; |
| case ContentPosition::Center: |
| return -availableFreeSpace / 2; |
| case ContentPosition::End: |
| return -availableFreeSpace; |
| case ContentPosition::FlexEnd: |
| return isReverse ? 0_lu : -availableFreeSpace; |
| default: |
| ASSERT((distribution == ContentDistribution::Default && position == ContentPosition::Normal) // Normal alignment. |
| || distribution == ContentDistribution::Stretch |
| || distribution == ContentDistribution::SpaceBetween); |
| return isReverse ? -availableFreeSpace : 0_lu; |
| } |
| } |
| |
| void RenderFlexibleBox::layoutAndPlaceFlexItems(LayoutUnit& crossAxisOffset, FlexLayoutItems& flexLayoutItems, LayoutUnit availableFreeSpace, RelayoutChildren relayoutChildren, FlexLineStates& lineStates, LayoutUnit gapBetweenItems) |
| { |
| LayoutUnit autoMarginOffset = autoMarginOffsetInMainAxis(flexLayoutItems, availableFreeSpace); |
| LayoutUnit mainAxisOffset = flowAwareBorderStart() + flowAwarePaddingStart(); |
| mainAxisOffset += initialJustifyContentOffset(style(), availableFreeSpace, flexLayoutItems.size(), isColumnOrRowReverse()); |
| if (style().flexDirection() == FlexDirection::RowReverse) |
| mainAxisOffset += isHorizontalFlow() ? verticalScrollbarWidth() : horizontalScrollbarHeight(); |
| |
| if (availableFreeSpace < 0) { |
| auto resolvedJustifyContent = style().justifyContent().resolve(contentAlignmentNormalBehavior()); |
| auto distribution = resolvedJustifyContent.distribution(); |
| auto safety = resolvedJustifyContent.overflow(); |
| auto position = resolveLeftRightAlignment(resolvedJustifyContent.position(), resolvedJustifyContent, style(), isColumnOrRowReverse()); |
| LayoutUnit overflow = contentAlignmentStartOverflow(availableFreeSpace, position, distribution, safety, isColumnOrRowReverse()); |
| m_justifyContentStartOverflow = std::max(m_justifyContentStartOverflow, overflow); |
| } |
| |
| LayoutUnit totalMainExtent = mainAxisExtent(); |
| LayoutUnit maxFlexItemCrossAxisExtent; |
| |
| LayoutUnit maxAscent; |
| LayoutUnit maxDescent = LayoutUnit::min(); |
| LayoutUnit lastBaselineMaxAscent; |
| std::optional<BaselineAlignmentState> baselineAlignmentState; |
| |
| auto resolvedJustifyContent = style().justifyContent().resolve(contentAlignmentNormalBehavior()); |
| auto distribution = resolvedJustifyContent.distribution(); |
| bool shouldFlipMainAxis = !isColumnFlow() && !isLeftToRightFlow(); |
| for (size_t i = 0; i < flexLayoutItems.size(); ++i) { |
| auto& flexLayoutItem = flexLayoutItems[i]; |
| auto& flexItem = flexLayoutItem.renderer.get(); |
| |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| |
| setOverridingMainSizeForFlexItem(flexItem, flexLayoutItem.flexedContentSize); |
| // The flexed content size and the override size include the scrollbar |
| // width, so we need to compare to the size including the scrollbar. |
| // FIXME: Should it include the scrollbar? |
| if (flexLayoutItem.flexedContentSize != mainAxisContentExtentForFlexItemIncludingScrollbar(flexItem)) |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| else { |
| // To avoid double applying margin changes in |
| // updateAutoMarginsInCrossAxis, we reset the margins here. |
| resetAutoMarginsAndLogicalTopInCrossAxis(flexItem); |
| } |
| // We may have already forced relayout for orthogonal flowing children in |
| // computeInnerFlexBaseSizeForFlexItem. |
| bool forceFlexItemRelayout = relayoutChildren == RelayoutChildren::Yes && !m_relaidOutFlexItems.contains(flexItem); |
| if (!forceFlexItemRelayout && flexItemHasPercentHeightDescendants(flexItem)) { |
| // Have to force another relayout even though the child is sized |
| // correctly, because its descendants are not sized correctly yet. Our |
| // previous layout of the child was done without an override height set. |
| // So, redo it here. |
| forceFlexItemRelayout = true; |
| } |
| updateFlexItemDirtyBitsBeforeLayout(forceFlexItemRelayout, flexItem); |
| if (!flexItem.needsLayout()) |
| flexItem.markForPaginationRelayoutIfNeeded(); |
| if (flexItem.needsLayout()) |
| m_relaidOutFlexItems.add(flexItem); |
| { |
| auto flexLayoutScope = SetForScope(m_afterMainAxisItemSizing, true); |
| flexItem.layoutIfNeeded(); |
| } |
| if (!flexLayoutItem.everHadLayout && flexItem.checkForRepaintDuringLayout()) { |
| flexItem.repaint(); |
| flexItem.repaintOverhangingFloats(true); |
| } |
| |
| updateAutoMarginsInMainAxis(flexItem, autoMarginOffset); |
| |
| LayoutUnit flexItemCrossAxisMarginBoxExtent; |
| |
| auto alignment = alignmentForFlexItem(flexItem); |
| if ((alignment == ItemPosition::Baseline || alignment == ItemPosition::LastBaseline) && !hasAutoMarginsInCrossAxis(flexItem)) { |
| LayoutUnit ascent = marginBoxAscentForFlexItem(flexItem); |
| LayoutUnit descent = (crossAxisMarginExtentForFlexItem(flexItem) + crossAxisExtentForFlexItem(flexItem)) - ascent; |
| maxDescent = std::max(maxDescent, descent); |
| |
| if (!baselineAlignmentState) { |
| auto alignmentContextAxis = style().isRowFlexDirection() ? LogicalBoxAxis::Inline : LogicalBoxAxis::Block; |
| baselineAlignmentState = { flexItem, alignment, ascent, alignmentContextAxis, style().writingMode() }; |
| } else |
| baselineAlignmentState->updateSharedGroup(flexItem, alignment, ascent); |
| |
| if (alignment == ItemPosition::Baseline) { |
| maxAscent = std::max(maxAscent, ascent); |
| flexItemCrossAxisMarginBoxExtent = maxAscent + maxDescent; |
| } else { |
| lastBaselineMaxAscent = std::max(lastBaselineMaxAscent, ascent); |
| flexItemCrossAxisMarginBoxExtent = lastBaselineMaxAscent + maxDescent; |
| } |
| |
| } else |
| flexItemCrossAxisMarginBoxExtent = crossAxisIntrinsicExtentForFlexItem(flexItem) + crossAxisMarginExtentForFlexItem(flexItem); |
| |
| if (!isColumnFlow()) |
| setLogicalHeight(std::max(logicalHeight(), crossAxisOffset + flowAwareBorderAfter() + flowAwarePaddingAfter() + flexItemCrossAxisMarginBoxExtent + crossAxisScrollbarExtent())); |
| maxFlexItemCrossAxisExtent = std::max(maxFlexItemCrossAxisExtent, flexItemCrossAxisMarginBoxExtent); |
| |
| mainAxisOffset += flowAwareMarginStartForFlexItem(flexItem); |
| |
| LayoutUnit flexItemMainExtent = mainAxisExtentForFlexItem(flexItem); |
| // In an RTL column situation, this will apply the margin-right/margin-end |
| // on the left. This will be fixed later in flipForRightToLeftColumn. |
| auto leadingScrollbarSize = writingMode().isInlineFlipped() && writingMode().isVertical() ? mainAxisScrollbarExtent() : LayoutUnit(); |
| LayoutPoint location(shouldFlipMainAxis ? totalMainExtent - mainAxisOffset - flexItemMainExtent - leadingScrollbarSize : mainAxisOffset, crossAxisOffset + flowAwareMarginBeforeForFlexItem(flexItem)); |
| setFlowAwareLocationForFlexItem(flexItem, location); |
| mainAxisOffset += flexItemMainExtent + flowAwareMarginEndForFlexItem(flexItem); |
| |
| if (i != flexLayoutItems.size() - 1) { |
| // The last item does not get extra space added. |
| mainAxisOffset += justifyContentSpaceBetweenFlexItems(availableFreeSpace, distribution, flexLayoutItems.size()) + gapBetweenItems; |
| } |
| |
| // FIXME: Deal with pagination. |
| } |
| |
| if (isColumnFlow()) |
| setLogicalHeight(std::max(logicalHeight(), mainAxisOffset + flowAwareBorderEnd() + flowAwarePaddingEnd() + scrollbarLogicalHeight())); |
| |
| if (style().flexDirection() == FlexDirection::ColumnReverse) { |
| // We have to do an extra pass for column-reverse to reposition the flex |
| // items since the start depends on the height of the flexbox, which we |
| // only know after we've positioned all the flex items. |
| updateLogicalHeight(); |
| layoutColumnReverse(flexLayoutItems, crossAxisOffset, availableFreeSpace, gapBetweenItems); |
| } |
| |
| lineStates.append(LineState(crossAxisOffset, maxFlexItemCrossAxisExtent, baselineAlignmentState, WTF::move(flexLayoutItems))); |
| crossAxisOffset += maxFlexItemCrossAxisExtent; |
| } |
| |
| void RenderFlexibleBox::layoutColumnReverse(const FlexLayoutItems& flexLayoutItems, LayoutUnit crossAxisOffset, LayoutUnit availableFreeSpace, LayoutUnit gapBetweenItems) |
| { |
| // This is similar to the logic in layoutAndPlaceFlexItems, except we place |
| // the children starting from the end of the flexbox. We also don't need to |
| // layout anything since we're just moving the children to a new position. |
| LayoutUnit mainAxisOffset = logicalHeight() - flowAwareBorderEnd() - flowAwarePaddingEnd(); |
| mainAxisOffset -= initialJustifyContentOffset(style(), availableFreeSpace, flexLayoutItems.size(), isColumnOrRowReverse()); |
| mainAxisOffset -= isHorizontalFlow() ? verticalScrollbarWidth() : horizontalScrollbarHeight(); |
| |
| auto distribution = style().justifyContent().resolve(contentAlignmentNormalBehavior()).distribution(); |
| |
| for (size_t i = 0; i < flexLayoutItems.size(); ++i) { |
| auto& flexItem = flexLayoutItems[i].renderer; |
| ASSERT(!flexItem->isOutOfFlowPositioned()); |
| mainAxisOffset -= mainAxisExtentForFlexItem(flexItem) + flowAwareMarginEndForFlexItem(flexItem); |
| setFlowAwareLocationForFlexItem(flexItem, LayoutPoint(mainAxisOffset, crossAxisOffset + flowAwareMarginBeforeForFlexItem(flexItem))); |
| mainAxisOffset -= flowAwareMarginStartForFlexItem(flexItem); |
| |
| if (i != flexLayoutItems.size() - 1) { |
| // The last item does not get extra space added. |
| mainAxisOffset -= justifyContentSpaceBetweenFlexItems(availableFreeSpace, distribution, flexLayoutItems.size()) + gapBetweenItems; |
| } |
| } |
| } |
| |
| static LayoutUnit initialAlignContentOffset(LayoutUnit availableFreeSpace, ContentPosition alignContent, ContentDistribution alignContentDistribution, OverflowAlignment safety, unsigned numberOfLines, bool isReversed) |
| { |
| if (availableFreeSpace < 0 && safety == OverflowAlignment::Safe) { |
| ASSERT(alignContent != ContentPosition::Normal); |
| alignContent = ContentPosition::Start; |
| } |
| |
| if (alignContent == ContentPosition::FlexEnd |
| || (alignContent == ContentPosition::End && !isReversed) |
| || (alignContent == ContentPosition::Start && isReversed)) |
| return availableFreeSpace; |
| if (alignContent == ContentPosition::Center) |
| return availableFreeSpace / 2; |
| if (alignContentDistribution == ContentDistribution::SpaceAround) { |
| if (availableFreeSpace > 0 && numberOfLines) |
| return availableFreeSpace / (2 * numberOfLines); |
| if (availableFreeSpace < 0) |
| return std::max(0_lu, availableFreeSpace / 2); |
| } |
| if (alignContentDistribution == ContentDistribution::SpaceEvenly) { |
| if (availableFreeSpace > 0) |
| return availableFreeSpace / (numberOfLines + 1); |
| // Fallback to 'safe center' |
| return std::max(0_lu, availableFreeSpace / 2); |
| } |
| return 0_lu; |
| } |
| |
| static LayoutUnit alignContentSpaceBetweenFlexItems(LayoutUnit availableFreeSpace, ContentDistribution alignContentDistribution, unsigned numberOfLines) |
| { |
| if (availableFreeSpace > 0 && numberOfLines > 1) { |
| if (alignContentDistribution == ContentDistribution::SpaceBetween) |
| return availableFreeSpace / (numberOfLines - 1); |
| if (alignContentDistribution == ContentDistribution::SpaceAround || alignContentDistribution == ContentDistribution::Stretch) |
| return availableFreeSpace / numberOfLines; |
| if (alignContentDistribution == ContentDistribution::SpaceEvenly) |
| return availableFreeSpace / (numberOfLines + 1); |
| } |
| return 0_lu; |
| } |
| |
| void RenderFlexibleBox::alignFlexLines(FlexLineStates& lineStates, LayoutUnit gapBetweenLines) |
| { |
| if (lineStates.isEmpty() || !isMultiline()) |
| return; |
| |
| auto alignedContent = style().alignContent().resolve(contentAlignmentNormalBehavior()); |
| auto position = alignedContent.position(); |
| auto distribution = alignedContent.distribution(); |
| auto safety = alignedContent.overflow(); |
| |
| bool isWrapReverse = this->isWrapReverse(); |
| |
| if (position == ContentPosition::FlexStart && !gapBetweenLines && safety != OverflowAlignment::Safe && !isWrapReverse) |
| return; |
| |
| size_t numLines = lineStates.size(); |
| LayoutUnit availableCrossAxisSpace = crossAxisContentExtent() - (numLines - 1) * gapBetweenLines; |
| for (size_t i = 0; i < numLines; ++i) |
| availableCrossAxisSpace -= lineStates[i].crossAxisExtent; |
| |
| m_alignContentStartOverflow = contentAlignmentStartOverflow(availableCrossAxisSpace, position, distribution, safety, isWrapReverse); |
| LayoutUnit lineOffset = initialAlignContentOffset(availableCrossAxisSpace, position, distribution, safety, numLines, isWrapReverse); |
| for (unsigned lineNumber = 0; lineNumber < numLines; ++lineNumber) { |
| LineState& lineState = lineStates[lineNumber]; |
| lineState.crossAxisOffset += lineOffset; |
| for (auto& flexLayoutItem : lineState.flexLayoutItems) |
| adjustAlignmentForFlexItem(flexLayoutItem.renderer, lineOffset); |
| |
| if (distribution == ContentDistribution::Stretch && availableCrossAxisSpace > 0) |
| lineStates[lineNumber].crossAxisExtent += availableCrossAxisSpace / static_cast<unsigned>(numLines); |
| |
| lineOffset += alignContentSpaceBetweenFlexItems(availableCrossAxisSpace, distribution, numLines) + gapBetweenLines; |
| } |
| } |
| |
| void RenderFlexibleBox::adjustAlignmentForFlexItem(RenderBox& flexItem, LayoutUnit delta) |
| { |
| ASSERT(!flexItem.isOutOfFlowPositioned()); |
| setFlowAwareLocationForFlexItem(flexItem, flowAwareLocationForFlexItem(flexItem) + LayoutSize(0_lu, delta)); |
| } |
| |
| void RenderFlexibleBox::alignFlexItems(FlexLineStates& lineStates) |
| { |
| for (LineState& lineState : lineStates) { |
| LayoutUnit lineCrossAxisExtent = lineState.crossAxisExtent; |
| auto baselineAlignmentState = lineState.baselineAlignmentState; |
| |
| if (lineState.baselineAlignmentState) |
| performBaselineAlignment(lineState); |
| |
| for (auto& flexLayoutItem : lineState.flexLayoutItems) { |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| |
| auto safety = overflowAlignmentForFlexItem(flexLayoutItem.renderer); |
| auto position = alignmentForFlexItem(flexLayoutItem.renderer); |
| if (updateAutoMarginsInCrossAxis(flexLayoutItem.renderer, std::max(0_lu, availableAlignmentSpaceForFlexItem(lineCrossAxisExtent, flexLayoutItem.renderer))) || position == ItemPosition::Baseline || position == ItemPosition::LastBaseline) |
| continue; |
| |
| if (position == ItemPosition::Stretch) |
| applyStretchAlignmentToFlexItem(flexLayoutItem.renderer, lineCrossAxisExtent); |
| LayoutUnit availableSpace = availableAlignmentSpaceForFlexItem(lineCrossAxisExtent, flexLayoutItem.renderer); |
| if (availableSpace < 0 && safety == OverflowAlignment::Safe) |
| position = ItemPosition::FlexStart; // See Start == FlexStart assumption in alignmentForFlexItem(). |
| LayoutUnit offset = alignmentOffset(availableSpace, position, { }, { }, isWrapReverse()); |
| adjustAlignmentForFlexItem(flexLayoutItem.renderer, offset); |
| } |
| } |
| } |
| |
| void RenderFlexibleBox::performBaselineAlignment(LineState& lineState) |
| { |
| ASSERT(lineState.baselineAlignmentState); |
| |
| auto lineCrossAxisExtent = lineState.crossAxisExtent; |
| bool containerHasWrapReverse = isWrapReverse(); |
| |
| auto flexItemWritingModeForBaselineAlignment = [&](const RenderBox& flexItem) { |
| if (mainAxisIsFlexItemInlineAxis(flexItem)) |
| return flexItem.style().writingMode(); |
| |
| auto alignmentContextAxis = style().isRowFlexDirection() ? LogicalBoxAxis::Inline : LogicalBoxAxis::Block; |
| return BaselineAlignmentState::usedWritingModeForBaselineAlignment(alignmentContextAxis, writingMode(), flexItem.writingMode()); |
| }; |
| |
| auto shouldAdjustItemTowardsCrossAxisEnd = [&](const FlowDirection& flexItemBlockFlowDirection, ItemPosition alignment) { |
| ASSERT(alignment == ItemPosition::Baseline || alignment == ItemPosition::LastBaseline); |
| |
| // The direction in which we are aligning (i.e. direction of the cross axis) must be parallel with the direction of the flex item's used writing mode |
| ASSERT_IMPLIES(crossAxisDirection() == RenderFlexibleBox::Direction::TopToBottom || crossAxisDirection() == RenderFlexibleBox::Direction::BottomToTop, flexItemBlockFlowDirection == RenderFlexibleBox::Direction::TopToBottom || flexItemBlockFlowDirection == RenderFlexibleBox::Direction::BottomToTop); |
| ASSERT_IMPLIES(crossAxisDirection() == RenderFlexibleBox::Direction::LeftToRight || crossAxisDirection() == RenderFlexibleBox::Direction::RightToLeft, flexItemBlockFlowDirection == RenderFlexibleBox::Direction::LeftToRight || flexItemBlockFlowDirection == RenderFlexibleBox::Direction::RightToLeft); |
| |
| // For first baseline aligned items, if its block direction is the opposite of |
| // the cross axis direction, then that means its fallback alignment (safe self-start) |
| // is in the direction of the end of the cross axis |
| // |
| // For last baseline aligned items, if its block direction is in the same direction as |
| // the cross axis direction, then that means its fallback alignment (safe self-end) is |
| // in the direction of the end of the cross axis |
| if (alignment == ItemPosition::Baseline) |
| return crossAxisDirection() != flexItemBlockFlowDirection; |
| return crossAxisDirection() == flexItemBlockFlowDirection; |
| }; |
| |
| for (auto& baselineSharingGroup : lineState.baselineAlignmentState.value().sharedGroups()) { |
| LayoutUnit minMarginAfterBaseline = LayoutUnit::max(); |
| for (auto& flexItem : baselineSharingGroup) { |
| auto position = alignmentForFlexItem(flexItem); |
| ASSERT(position == ItemPosition::Baseline || position == ItemPosition::LastBaseline); |
| auto offset = alignmentOffset(availableAlignmentSpaceForFlexItem(lineCrossAxisExtent, flexItem), position, marginBoxAscentForFlexItem(flexItem), baselineSharingGroup.maxAscent(), containerHasWrapReverse); |
| adjustAlignmentForFlexItem(flexItem, offset); |
| |
| if (shouldAdjustItemTowardsCrossAxisEnd(flexItemWritingModeForBaselineAlignment(flexItem).blockDirection(), position)) |
| minMarginAfterBaseline = std::min(minMarginAfterBaseline, availableAlignmentSpaceForFlexItem(lineCrossAxisExtent, flexItem) - offset); |
| } |
| // css-align-3 9.3 part 3: |
| // Position the aligned baseline-sharing group within the alignment container according to its |
| // fallback alignment. The fallback alignment of a baseline-sharing group is the fallback alignment |
| // of its items as resolved to physical directions. |
| if (minMarginAfterBaseline) { |
| for (auto& flexItem : baselineSharingGroup) { |
| if (shouldAdjustItemTowardsCrossAxisEnd(flexItemWritingModeForBaselineAlignment(flexItem).blockDirection(), alignmentForFlexItem(flexItem)) && !hasAutoMarginsInCrossAxis(flexItem)) |
| adjustAlignmentForFlexItem(flexItem, minMarginAfterBaseline); |
| } |
| } |
| } |
| } |
| |
| void RenderFlexibleBox::applyStretchAlignmentToFlexItem(RenderBox& flexItem, LayoutUnit lineCrossAxisExtent) |
| { |
| auto flexLayoutScope = SetForScope(m_afterCrossAxisItemSizing, true); |
| if (mainAxisIsFlexItemInlineAxis(flexItem) && flexItem.style().logicalHeight().isAuto()) { |
| LayoutUnit stretchedLogicalHeight = std::max(flexItem.borderAndPaddingLogicalHeight(), |
| lineCrossAxisExtent - crossAxisMarginExtentForFlexItem(flexItem)); |
| ASSERT(!flexItem.needsLayout()); |
| LayoutUnit desiredLogicalHeight = flexItem.constrainLogicalHeightByMinMax(stretchedLogicalHeight, cachedFlexItemIntrinsicContentLogicalHeight(flexItem)); |
| |
| // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
| bool flexItemNeedsRelayout = desiredLogicalHeight != flexItem.logicalHeight(); |
| if (auto* block = dynamicDowncast<RenderBlock>(flexItem); block && block->hasPercentHeightDescendants() && m_relaidOutFlexItems.contains(flexItem)) { |
| // Have to force another relayout even though the child is sized |
| // correctly, because its descendants are not sized correctly yet. Our |
| // previous layout of the child was done without an override height set. |
| // So, redo it here. |
| flexItemNeedsRelayout = true; |
| } |
| if (flexItemNeedsRelayout || !flexItem.overridingBorderBoxLogicalHeight()) |
| flexItem.setOverridingBorderBoxLogicalHeight(desiredLogicalHeight); |
| if (flexItemNeedsRelayout) { |
| SetForScope resetFlexItemLogicalHeight(m_shouldResetFlexItemLogicalHeightBeforeLayout, true); |
| // We cache the child's intrinsic content logical height to avoid it being |
| // reset to the stretched height. |
| // FIXME: This is fragile. RenderBoxes should be smart enough to |
| // determine their intrinsic content logical height correctly even when |
| // there's an overrideHeight. |
| LayoutUnit flexItemIntrinsicContentLogicalHeight = cachedFlexItemIntrinsicContentLogicalHeight(flexItem); |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| |
| // Don't use layoutChildIfNeeded to avoid setting cross axis cached size twice. |
| flexItem.layoutIfNeeded(); |
| |
| setCachedFlexItemIntrinsicContentLogicalHeight(flexItem, flexItemIntrinsicContentLogicalHeight); |
| } |
| } else if (!mainAxisIsFlexItemInlineAxis(flexItem) && flexItem.style().logicalWidth().isAuto()) { |
| LayoutUnit flexItemWidth = std::max(0_lu, lineCrossAxisExtent - crossAxisMarginExtentForFlexItem(flexItem)); |
| flexItemWidth = flexItem.constrainLogicalWidthByMinMax(flexItemWidth, crossAxisContentExtent(), *this); |
| |
| if (flexItemWidth != flexItem.logicalWidth()) { |
| flexItem.setOverridingBorderBoxLogicalWidth(flexItemWidth); |
| flexItem.setChildNeedsLayout(MarkOnlyThis); |
| flexItem.layoutIfNeeded(); |
| } |
| } |
| } |
| |
| void RenderFlexibleBox::flipForRightToLeftColumn(const FlexLineStates& lineStates) |
| { |
| if (writingMode().isLogicalLeftInlineStart() || !isColumnFlow()) |
| return; |
| |
| LayoutUnit crossExtent = crossAxisExtent(); |
| for (size_t lineNumber = 0; lineNumber < lineStates.size(); ++lineNumber) { |
| const LineState& lineState = lineStates[lineNumber]; |
| for (auto& flexLayoutItem : lineState.flexLayoutItems) { |
| ASSERT(!flexLayoutItem.renderer->isOutOfFlowPositioned()); |
| |
| LayoutPoint location = flowAwareLocationForFlexItem(flexLayoutItem.renderer); |
| // For vertical flows, setFlowAwareLocationForFlexItem will transpose x and |
| // y, so using the y axis for a column cross axis extent is correct. |
| location.setY(crossExtent - crossAxisExtentForFlexItem(flexLayoutItem.renderer) - location.y()); |
| if (!isHorizontalWritingMode()) |
| location.move(LayoutSize(0, -horizontalScrollbarHeight())); |
| setFlowAwareLocationForFlexItem(flexLayoutItem.renderer, location); |
| } |
| } |
| } |
| |
| void RenderFlexibleBox::flipForWrapReverse(const FlexLineStates& lineStates, LayoutUnit crossAxisStartEdge) |
| { |
| LayoutUnit contentExtent = crossAxisContentExtent(); |
| for (size_t lineNumber = 0; lineNumber < lineStates.size(); ++lineNumber) { |
| const LineState& lineState = lineStates[lineNumber]; |
| for (auto& flexLayoutItem : lineState.flexLayoutItems) { |
| LayoutUnit lineCrossAxisExtent = lineStates[lineNumber].crossAxisExtent; |
| LayoutUnit originalOffset = lineStates[lineNumber].crossAxisOffset - crossAxisStartEdge; |
| LayoutUnit newOffset = contentExtent - originalOffset - lineCrossAxisExtent; |
| adjustAlignmentForFlexItem(flexLayoutItem.renderer, newOffset - originalOffset); |
| } |
| } |
| } |
| |
| std::optional<TextDirection> RenderFlexibleBox::leftRightAxisDirectionFromStyle(const RenderStyle& style) |
| { |
| if (!style.isColumnFlexDirection()) // Prioritize text direction. |
| return style.writingMode().bidiDirection(); |
| |
| if (style.writingMode().isVertical()) { // Fall back to block direction if possible. |
| return style.writingMode().isBlockLeftToRight() |
| ? TextDirection::LTR |
| : TextDirection::RTL; |
| } |
| |
| return std::nullopt; |
| } |
| |
| LayoutOptionalOutsets RenderFlexibleBox::allowedLayoutOverflow() const |
| { |
| LayoutOptionalOutsets allowance = RenderBox::allowedLayoutOverflow(); |
| |
| bool isColumnar = style().isColumnFlexDirection(); |
| if (isHorizontalWritingMode()) { |
| allowance.top() = isColumnar ? m_justifyContentStartOverflow : m_alignContentStartOverflow; |
| if (writingMode().isInlineLeftToRight()) |
| allowance.left() = isColumnar ? m_alignContentStartOverflow : m_justifyContentStartOverflow; |
| else |
| allowance.right() = isColumnar ? m_alignContentStartOverflow : m_justifyContentStartOverflow; |
| } else { |
| allowance.left() = isColumnar ? m_justifyContentStartOverflow : m_alignContentStartOverflow; |
| if (writingMode().isInlineTopToBottom()) |
| allowance.top() = isColumnar ? m_alignContentStartOverflow : m_justifyContentStartOverflow; |
| else |
| allowance.bottom() = isColumnar ? m_alignContentStartOverflow : m_justifyContentStartOverflow; |
| } |
| |
| return allowance; |
| } |
| |
| LayoutUnit RenderFlexibleBox::computeGap(RenderFlexibleBox::GapType gapType) const |
| { |
| // row-gap is used for gaps between flex items in column flows or for gaps between lines in row flows. |
| bool usesRowGap = (gapType == GapType::BetweenItems) == isColumnFlow(); |
| auto& gap = usesRowGap ? style().rowGap() : style().columnGap(); |
| if (gap.isNormal()) [[likely]] |
| return { }; |
| |
| auto availableSize = usesRowGap ? availableLogicalHeightForPercentageComputation().value_or(0_lu) : contentBoxLogicalWidth(); |
| return Style::evaluateMinimum<LayoutUnit>(gap, availableSize, Style::ZoomNeeded { }); |
| } |
| |
| bool RenderFlexibleBox::layoutUsingFlexFormattingContext() |
| { |
| if (m_hasFlexFormattingContextLayout && !*m_hasFlexFormattingContextLayout) { |
| // FIXME: Avoid continous content checking on (potentially) unsupported content. This ensures no pref impact on cases like resize etc. |
| // Remove when canUseForFlexLayout becomes less expensive. |
| return false; |
| } |
| |
| m_hasFlexFormattingContextLayout = LayoutIntegration::canUseForFlexLayout(*this); |
| if (!*m_hasFlexFormattingContextLayout) |
| return false; |
| |
| auto flexLayout = LayoutIntegration::FlexLayout { *this }; |
| flexLayout.updateFormattingContexGeometries(); |
| |
| flexLayout.layout(); |
| setLogicalHeight(std::max(logicalHeight(), borderAndPaddingLogicalHeight() + flexLayout.contentBoxLogicalHeight())); |
| updateLogicalHeight(); |
| return true; |
| } |
| |
| const RenderBox* RenderFlexibleBox::firstBaselineCandidateOnLine(OrderIterator flexItemIterator, size_t numberOfItemsOnLine) const |
| { |
| // Note that "first" here means in iterator order and not logical flex order (caller can pass in reversed order). |
| size_t index = 0; |
| const RenderBox* baselineFlexItem = nullptr; |
| for (auto* flexItem = flexItemIterator.first(); flexItem; flexItem = flexItemIterator.next()) { |
| if (flexItemIterator.shouldSkipChild(*flexItem)) |
| continue; |
| auto flexItemPosition = alignmentForFlexItem(*flexItem); |
| if ((flexItemPosition == ItemPosition::Baseline || flexItemPosition == ItemPosition::LastBaseline) |
| && mainAxisIsFlexItemInlineAxis(*flexItem) && !hasAutoMarginsInCrossAxis(*flexItem)) |
| return flexItem; |
| if (!baselineFlexItem) |
| baselineFlexItem = flexItem; |
| if (++index == numberOfItemsOnLine) |
| return baselineFlexItem; |
| } |
| return nullptr; |
| } |
| |
| const RenderBox* RenderFlexibleBox::lastBaselineCandidateOnLine(OrderIterator flexItemIterator, size_t numberOfItemsOnLine) const |
| { |
| // Note that "last" here means in iterator order and not logical flex order (caller can pass in reversed order). |
| size_t index = 0; |
| RenderBox* baselineFlexItem = nullptr; |
| for (auto* flexItem = flexItemIterator.first(); flexItem; flexItem = flexItemIterator.next()) { |
| if (flexItemIterator.shouldSkipChild(*flexItem)) |
| continue; |
| auto flexItemPosition = alignmentForFlexItem(*flexItem); |
| if ((flexItemPosition == ItemPosition::Baseline || flexItemPosition == ItemPosition::LastBaseline) |
| && mainAxisIsFlexItemInlineAxis(*flexItem) && !hasAutoMarginsInCrossAxis(*flexItem)) |
| baselineFlexItem = flexItem; |
| if (++index == numberOfItemsOnLine) |
| return baselineFlexItem ? baselineFlexItem : flexItem; |
| } |
| return nullptr; |
| } |
| |
| const RenderBox* RenderFlexibleBox::flexItemForFirstBaseline() const |
| { |
| // Looking for baseline flex candidate on visually first line. |
| auto useLastLine = isWrapReverse(); |
| auto useLastItem = style().flexDirection() == FlexDirection::RowReverse || style().flexDirection() == FlexDirection::ColumnReverse; |
| |
| if (!useLastLine) { |
| if (!useLastItem) { |
| // Logically (and visually) first item on logically (and visually) first line. |
| return firstBaselineCandidateOnLine(m_orderIterator, m_numberOfFlexItemsOnFirstLine); |
| } |
| // Logically last (but visually first) item on logically (and visually) first line. |
| return lastBaselineCandidateOnLine(m_orderIterator, m_numberOfFlexItemsOnFirstLine); |
| } |
| |
| if (!useLastItem) { |
| // Logically (and visually) first item on logically last (but visually first) line. |
| return lastBaselineCandidateOnLine(m_orderIterator.reverse(), m_numberOfFlexItemsOnLastLine); |
| } |
| // Logically last (but visually first) item on logically last (but visually first) line. |
| return firstBaselineCandidateOnLine(m_orderIterator.reverse(), m_numberOfFlexItemsOnLastLine); |
| } |
| |
| const RenderBox* RenderFlexibleBox::flexItemForLastBaseline() const |
| { |
| // Looking for baseline flex candidate on visually last line. |
| auto useLastLine = isWrapReverse(); |
| auto useLastItem = style().flexDirection() == FlexDirection::RowReverse || style().flexDirection() == FlexDirection::ColumnReverse; |
| |
| if (!useLastLine) { |
| if (!useLastItem) { |
| // Logically (and visually) last item on logically (and visually) last line. |
| return firstBaselineCandidateOnLine(m_orderIterator.reverse(), m_numberOfFlexItemsOnLastLine); |
| } |
| // Logically first (but visually last) item on logically (and visually) last line. |
| return lastBaselineCandidateOnLine(m_orderIterator.reverse(), m_numberOfFlexItemsOnLastLine); |
| } |
| |
| if (!useLastItem) { |
| // Logically (and visually) last item on logically first (but visually last) line. |
| return lastBaselineCandidateOnLine(m_orderIterator, m_numberOfFlexItemsOnFirstLine); |
| } |
| // Logically first (but visually last) item on logically last (but visually first) line. |
| return firstBaselineCandidateOnLine(m_orderIterator, m_numberOfFlexItemsOnFirstLine); |
| } |
| |
| } |