| /* |
| * Copyright 2022 WebAssembly Community Group participants |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <optional> |
| #include <variant> |
| |
| #include "analysis/cfg.h" |
| #include "ir/bits.h" |
| #include "ir/branch-utils.h" |
| #include "ir/eh-utils.h" |
| #include "ir/gc-type-utils.h" |
| #include "ir/linear-execution.h" |
| #include "ir/local-graph.h" |
| #include "ir/module-utils.h" |
| #include "ir/possible-contents.h" |
| #include "support/insert_ordered.h" |
| #include "wasm.h" |
| |
| namespace std { |
| |
| std::ostream& operator<<(std::ostream& stream, |
| const wasm::PossibleContents& contents) { |
| contents.dump(stream); |
| return stream; |
| } |
| |
| } // namespace std |
| |
| namespace wasm { |
| |
| PossibleContents PossibleContents::combine(const PossibleContents& a, |
| const PossibleContents& b) { |
| auto aType = a.getType(); |
| auto bType = b.getType(); |
| // First handle the trivial cases of them being equal, or one of them is |
| // None or Many. |
| if (a == b) { |
| return a; |
| } |
| if (b.isNone()) { |
| return a; |
| } |
| if (a.isNone()) { |
| return b; |
| } |
| if (a.isMany()) { |
| return a; |
| } |
| if (b.isMany()) { |
| return b; |
| } |
| |
| if (!aType.isRef() || !bType.isRef()) { |
| // At least one is not a reference. The only possibility left for a useful |
| // combination here is if they have the same type (since we've already ruled |
| // out the case of them being equal). If they have the same type then |
| // neither is a reference and we can emit an exact type (since subtyping is |
| // not relevant for non-references). |
| if (aType == bType) { |
| return ExactType(aType); |
| } else { |
| return Many(); |
| } |
| } |
| |
| // Special handling for references from here. |
| |
| if (a.isNull() && b.isNull()) { |
| // These must be nulls in different hierarchies, otherwise a would have |
| // been handled by the `a == b` case above. |
| assert(aType != bType); |
| return Many(); |
| } |
| |
| auto lub = Type::getLeastUpperBound(aType, bType); |
| if (lub == Type::none) { |
| // The types are not in the same hierarchy. |
| return Many(); |
| } |
| |
| // From here we can assume there is a useful LUB. |
| |
| // Nulls can be combined in by just adding nullability to a type. |
| if (a.isNull() || b.isNull()) { |
| // Only one of them can be null here, since we already handled the case |
| // where they were both null. |
| assert(!a.isNull() || !b.isNull()); |
| // If only one is a null then we can use the type info from the b, and |
| // just add in nullability. For example, a literal of type T and a null |
| // becomes an exact type of T that allows nulls, and so forth. |
| auto mixInNull = [](ConeType cone) { |
| cone.type = Type(cone.type.getHeapType(), Nullable); |
| return cone; |
| }; |
| if (!a.isNull()) { |
| return mixInNull(a.getCone()); |
| } else if (!b.isNull()) { |
| return mixInNull(b.getCone()); |
| } |
| } |
| |
| // Find a ConeType that describes both inputs, using the shared ancestor which |
| // is the LUB. We need to find how big a cone we need: the cone must be big |
| // enough to contain both the inputs. |
| auto aDepth = a.getCone().depth; |
| auto bDepth = b.getCone().depth; |
| Index newDepth; |
| if (aDepth == FullDepth || bDepth == FullDepth) { |
| // At least one has full (infinite) depth, so we know the new depth must |
| // be the same. |
| newDepth = FullDepth; |
| } else { |
| // The depth we need under the lub is how far from the lub we are, plus |
| // the depth of our cone. |
| // TODO: we could make a single loop that also does the LUB, at the same |
| // time, and also avoids calling getDepth() which loops once more? |
| auto aDepthFromRoot = aType.getHeapType().getDepth(); |
| auto bDepthFromRoot = bType.getHeapType().getDepth(); |
| auto lubDepthFromRoot = lub.getHeapType().getDepth(); |
| assert(lubDepthFromRoot <= aDepthFromRoot); |
| assert(lubDepthFromRoot <= bDepthFromRoot); |
| Index aDepthUnderLub = aDepthFromRoot - lubDepthFromRoot + aDepth; |
| Index bDepthUnderLub = bDepthFromRoot - lubDepthFromRoot + bDepth; |
| |
| // The total cone must be big enough to contain all the above. |
| newDepth = std::max(aDepthUnderLub, bDepthUnderLub); |
| } |
| |
| return ConeType{lub, newDepth}; |
| } |
| |
| void PossibleContents::intersect(const PossibleContents& other) { |
| // This does not yet handle all possible content. |
| assert(other.isFullConeType() || other.isLiteral() || other.isNone()); |
| |
| if (*this == other) { |
| // Nothing changes. |
| return; |
| } |
| |
| if (!haveIntersection(*this, other)) { |
| // There is no intersection at all. |
| // Note that this code path handles |this| or |other| being None. |
| value = None(); |
| return; |
| } |
| |
| if (isSubContents(other, *this)) { |
| // The intersection is just |other|. |
| // Note that this code path handles |this| being Many. |
| value = other.value; |
| return; |
| } |
| |
| if (isSubContents(*this, other)) { |
| // The intersection is just |this|. |
| return; |
| } |
| |
| if (isLiteral() || other.isLiteral()) { |
| // We've ruled out either being a subcontents of the other. A literal has |
| // no other intersection possibility. |
| value = None(); |
| return; |
| } |
| |
| auto type = getType(); |
| auto otherType = other.getType(); |
| auto heapType = type.getHeapType(); |
| auto otherHeapType = otherType.getHeapType(); |
| |
| // If both inputs are nullable then the intersection is nullable as well. |
| auto nullability = |
| type.isNullable() && otherType.isNullable() ? Nullable : NonNullable; |
| |
| auto setNoneOrNull = [&]() { |
| if (nullability == Nullable) { |
| value = Literal::makeNull(heapType); |
| } else { |
| value = None(); |
| } |
| }; |
| |
| // If the heap types are not compatible then they are in separate hierarchies |
| // and there is no intersection, aside from possibly a null of the bottom |
| // type. |
| auto isSubType = HeapType::isSubType(heapType, otherHeapType); |
| auto otherIsSubType = HeapType::isSubType(otherHeapType, heapType); |
| if (!isSubType && !otherIsSubType) { |
| if (heapType.getBottom() == otherHeapType.getBottom()) { |
| setNoneOrNull(); |
| } else { |
| value = None(); |
| } |
| return; |
| } |
| |
| // The heap types are compatible, so intersect the cones. |
| auto depthFromRoot = heapType.getDepth(); |
| auto otherDepthFromRoot = otherHeapType.getDepth(); |
| |
| // To compute the new cone, find the new heap type for it, and to compute its |
| // depth, consider the adjustments to the existing depths that stem from the |
| // choice of new heap type. |
| HeapType newHeapType; |
| |
| if (depthFromRoot < otherDepthFromRoot) { |
| newHeapType = otherHeapType; |
| } else { |
| newHeapType = heapType; |
| } |
| |
| // Note the global's information, if we started as a global. In that case, the |
| // code below will refine our type but we can remain a global, which we will |
| // accomplish by restoring our global status at the end. |
| std::optional<Name> globalName; |
| if (isGlobal()) { |
| globalName = getGlobal(); |
| } |
| |
| auto newType = Type(newHeapType, nullability); |
| |
| // By assumption |other| has full depth. Consider the other cone in |this|. |
| if (hasFullCone()) { |
| // Both are full cones, so the result is as well. |
| value = FullConeType(newType); |
| } else { |
| // The result is a partial cone. If the cone starts in |otherHeapType| then |
| // we need to adjust the depth down, since it will be smaller than the |
| // original cone: |
| /* |
| // .. |
| // / |
| // otherHeapType |
| // / \ |
| // heapType .. |
| // \ |
| */ |
| // E.g. if |this| is a cone of depth 10, and |otherHeapType| is an immediate |
| // subtype of |this|, then the new cone must be of depth 9. |
| auto newDepth = getCone().depth; |
| if (newHeapType == otherHeapType) { |
| assert(depthFromRoot <= otherDepthFromRoot); |
| auto reduction = otherDepthFromRoot - depthFromRoot; |
| if (reduction > newDepth) { |
| // The cone on heapType does not even reach the cone on otherHeapType, |
| // so the result is not a cone. |
| setNoneOrNull(); |
| return; |
| } |
| newDepth -= reduction; |
| } |
| |
| value = ConeType{newType, newDepth}; |
| } |
| |
| if (globalName) { |
| // Restore the global but keep the new and refined type. |
| value = GlobalInfo{*globalName, getType()}; |
| } |
| } |
| |
| bool PossibleContents::haveIntersection(const PossibleContents& a, |
| const PossibleContents& b) { |
| if (a.isNone() || b.isNone()) { |
| // One is the empty set, so nothing can intersect here. |
| return false; |
| } |
| |
| if (a.isMany() || b.isMany()) { |
| // One is the set of all things, so definitely something can intersect since |
| // we've ruled out an empty set for both. |
| return true; |
| } |
| |
| if (a == b) { |
| // The intersection is equal to them. |
| return true; |
| } |
| |
| auto aType = a.getType(); |
| auto bType = b.getType(); |
| |
| if (!aType.isRef() || !bType.isRef()) { |
| // At least one is not a reference. The only way they can intersect is if |
| // the type is identical, and they are not both literals (we've already |
| // ruled out them being identical earlier). |
| return aType == bType && (!a.isLiteral() || !b.isLiteral()); |
| } |
| |
| // From here on we focus on references. |
| |
| auto aHeapType = aType.getHeapType(); |
| auto bHeapType = bType.getHeapType(); |
| |
| if (aType.isNullable() && bType.isNullable() && |
| aHeapType.getBottom() == bHeapType.getBottom()) { |
| // A compatible null is possible on both sides. |
| return true; |
| } |
| |
| // We ruled out having a compatible null on both sides. If one is simply a |
| // null then no chance for an intersection remains. |
| if (a.isNull() || b.isNull()) { |
| return false; |
| } |
| |
| auto aSubB = HeapType::isSubType(aHeapType, bHeapType); |
| auto bSubA = HeapType::isSubType(bHeapType, aHeapType); |
| if (!aSubB && !bSubA) { |
| // No type can appear in both a and b, so the types differ, so the values |
| // do not overlap. |
| return false; |
| } |
| |
| // From here on we focus on references and can ignore the case of null - any |
| // intersection must be of a non-null value, so we can focus on the heap |
| // types. |
| |
| auto aDepthFromRoot = aHeapType.getDepth(); |
| auto bDepthFromRoot = bHeapType.getDepth(); |
| |
| if (aSubB) { |
| // A is a subtype of B. For there to be an intersection we need their cones |
| // to intersect, that is, to rule out the case where the cone from B is not |
| // deep enough to reach A. |
| assert(aDepthFromRoot >= bDepthFromRoot); |
| return aDepthFromRoot - bDepthFromRoot <= b.getCone().depth; |
| } else if (bSubA) { |
| assert(bDepthFromRoot >= aDepthFromRoot); |
| return bDepthFromRoot - aDepthFromRoot <= a.getCone().depth; |
| } else { |
| WASM_UNREACHABLE("we ruled out no subtyping before"); |
| } |
| |
| // TODO: we can also optimize things like different Literals, but existing |
| // passes do such things already so it is low priority. |
| } |
| |
| bool PossibleContents::isSubContents(const PossibleContents& a, |
| const PossibleContents& b) { |
| if (a == b) { |
| return true; |
| } |
| |
| if (a.isNone()) { |
| return true; |
| } |
| |
| if (b.isNone()) { |
| return false; |
| } |
| |
| if (a.isMany()) { |
| return false; |
| } |
| |
| if (b.isMany()) { |
| return true; |
| } |
| |
| if (a.isLiteral()) { |
| // Note we already checked for |a == b| above. We need b to be a set that |
| // contains the literal a. |
| return !b.isLiteral() && Type::isSubType(a.getType(), b.getType()); |
| } |
| |
| if (b.isLiteral()) { |
| return false; |
| } |
| |
| if (b.isFullConeType()) { |
| if (a.isNull()) { |
| return b.getType().isNullable(); |
| } |
| return Type::isSubType(a.getType(), b.getType()); |
| } |
| |
| if (a.isFullConeType()) { |
| // We've already ruled out b being a full cone type before. |
| return false; |
| } |
| |
| WASM_UNREACHABLE("unhandled case of isSubContents"); |
| } |
| |
| namespace { |
| |
| // We are going to do a very large flow operation, potentially, as we create |
| // a Location for every interesting part in the entire wasm, and some of those |
| // places will have lots of links (like a struct field may link out to every |
| // single struct.get of that type), so we must make the data structures here |
| // as efficient as possible. Towards that goal, we work with location |
| // *indexes* where possible, which are small (32 bits) and do not require any |
| // complex hashing when we use them in sets or maps. |
| // |
| // Note that we do not use indexes everywhere, since the initial analysis is |
| // done in parallel, and we do not have a fixed indexing of locations yet. When |
| // we merge the parallel data we create that indexing, and use indexes from then |
| // on. |
| using LocationIndex = uint32_t; |
| |
| #ifndef NDEBUG |
| // Assert on not having duplicates in a vector. |
| template<typename T> void disallowDuplicates(const T& targets) { |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::unordered_set<LocationIndex> uniqueTargets; |
| for (const auto& target : targets) { |
| uniqueTargets.insert(target); |
| } |
| assert(uniqueTargets.size() == targets.size()); |
| #endif |
| } |
| #endif |
| |
| // A link indicates a flow of content from one location to another. For |
| // example, if we do a local.get and return that value from a function, then |
| // we have a link from the ExpressionLocation of that local.get to a |
| // ResultLocation. |
| template<typename T> struct Link { |
| T from; |
| T to; |
| |
| bool operator==(const Link<T>& other) const { |
| return from == other.from && to == other.to; |
| } |
| }; |
| |
| using LocationLink = Link<Location>; |
| using IndexLink = Link<LocationIndex>; |
| |
| } // anonymous namespace |
| |
| } // namespace wasm |
| |
| namespace std { |
| |
| template<> struct hash<wasm::LocationLink> { |
| size_t operator()(const wasm::LocationLink& loc) const { |
| return std::hash<std::pair<wasm::Location, wasm::Location>>{}( |
| {loc.from, loc.to}); |
| } |
| }; |
| |
| template<> struct hash<wasm::IndexLink> { |
| size_t operator()(const wasm::IndexLink& loc) const { |
| return std::hash<std::pair<wasm::LocationIndex, wasm::LocationIndex>>{}( |
| {loc.from, loc.to}); |
| } |
| }; |
| |
| } // namespace std |
| |
| namespace wasm { |
| |
| namespace { |
| |
| // The data we gather from each function, as we process them in parallel. Later |
| // this will be merged into a single big graph. |
| struct CollectedFuncInfo { |
| // All the links we found in this function. Rarely are there duplicates |
| // in this list (say when writing to the same global location from another |
| // global location), and we do not try to deduplicate here, just store them in |
| // a plain array for now, which is faster (later, when we merge all the info |
| // from the functions, we need to deduplicate anyhow). |
| std::vector<LocationLink> links; |
| |
| // All the roots of the graph, that is, places that begin by containing some |
| // particular content. That includes i32.const, ref.func, struct.new, etc. All |
| // possible contents in the rest of the graph flow from such places. |
| // |
| // The vector here is of the location of the root and then its contents. |
| std::vector<std::pair<Location, PossibleContents>> roots; |
| |
| // In some cases we need to know the parent of the expression. Consider this: |
| // |
| // (struct.set $A k |
| // (local.get $ref) |
| // (local.get $value) |
| // ) |
| // |
| // Imagine that the first local.get, for $ref, receives a new value. That can |
| // affect where the struct.set sends values: if previously that local.get had |
| // no possible contents, and now it does, then we have DataLocations to |
| // update. Likewise, when the second local.get is updated we must do the same, |
| // but again which DataLocations we update depends on the ref passed to the |
| // struct.set. To handle such things, we set add a childParent link, and then |
| // when we update the child we can find the parent and handle any special |
| // behavior we need there. |
| std::unordered_map<Expression*, Expression*> childParents; |
| }; |
| |
| // Does a walk while maintaining a map of names of branch targets to those |
| // expressions, so they can be found by their name. |
| // TODO: can this replace ControlFlowWalker in other places? |
| template<typename SubType, typename VisitorType = Visitor<SubType>> |
| struct BreakTargetWalker : public PostWalker<SubType, VisitorType> { |
| std::unordered_map<Name, Expression*> breakTargets; |
| |
| Expression* findBreakTarget(Name name) { return breakTargets[name]; } |
| |
| static void scan(SubType* self, Expression** currp) { |
| auto* curr = *currp; |
| BranchUtils::operateOnScopeNameDefs( |
| curr, [&](Name name) { self->breakTargets[name] = curr; }); |
| |
| PostWalker<SubType, VisitorType>::scan(self, currp); |
| } |
| }; |
| |
| // Walk the wasm and find all the links we need to care about, and the locations |
| // and roots related to them. This builds up a CollectedFuncInfo data structure. |
| // After all InfoCollectors run, those data structures will be merged and the |
| // main flow will begin. |
| struct InfoCollector |
| : public BreakTargetWalker<InfoCollector, OverriddenVisitor<InfoCollector>> { |
| CollectedFuncInfo& info; |
| |
| InfoCollector(CollectedFuncInfo& info) : info(info) {} |
| |
| // Check if a type is relevant for us. If not, we can ignore it entirely. |
| bool isRelevant(Type type) { |
| if (type == Type::unreachable || type == Type::none) { |
| return false; |
| } |
| if (type.isTuple()) { |
| for (auto t : type) { |
| if (isRelevant(t)) { |
| return true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool isRelevant(Signature sig) { |
| return isRelevant(sig.params) || isRelevant(sig.results); |
| } |
| |
| bool isRelevant(Expression* curr) { return curr && isRelevant(curr->type); } |
| |
| template<typename T> bool isRelevant(const T& vec) { |
| for (auto* expr : vec) { |
| if (isRelevant(expr->type)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Each visit*() call is responsible for connecting the children of a node to |
| // that node. Responsibility for connecting the node's output to anywhere |
| // else (another expression or the function itself, if we are at the top |
| // level) is the responsibility of the outside. |
| |
| void visitBlock(Block* curr) { |
| if (curr->list.empty()) { |
| return; |
| } |
| |
| // The final item in the block can flow a value to here as well. |
| receiveChildValue(curr->list.back(), curr); |
| } |
| void visitIf(If* curr) { |
| // Each arm may flow out a value. |
| receiveChildValue(curr->ifTrue, curr); |
| receiveChildValue(curr->ifFalse, curr); |
| } |
| void visitLoop(Loop* curr) { receiveChildValue(curr->body, curr); } |
| void visitBreak(Break* curr) { |
| // Connect the value (if present) to the break target. |
| handleBreakValue(curr); |
| |
| // The value may also flow through in a br_if (the type will indicate that, |
| // which receiveChildValue will notice). |
| receiveChildValue(curr->value, curr); |
| } |
| void visitSwitch(Switch* curr) { handleBreakValue(curr); } |
| void visitLoad(Load* curr) { |
| // We could infer the exact type here, but as no subtyping is possible, it |
| // would have no benefit, so just add a generic root (which will be "Many"). |
| // See the comment on the ContentOracle class. |
| addRoot(curr); |
| } |
| void visitStore(Store* curr) {} |
| void visitAtomicRMW(AtomicRMW* curr) { addRoot(curr); } |
| void visitAtomicCmpxchg(AtomicCmpxchg* curr) { addRoot(curr); } |
| void visitAtomicWait(AtomicWait* curr) { addRoot(curr); } |
| void visitAtomicNotify(AtomicNotify* curr) { addRoot(curr); } |
| void visitAtomicFence(AtomicFence* curr) {} |
| void visitSIMDExtract(SIMDExtract* curr) { addRoot(curr); } |
| void visitSIMDReplace(SIMDReplace* curr) { addRoot(curr); } |
| void visitSIMDShuffle(SIMDShuffle* curr) { addRoot(curr); } |
| void visitSIMDTernary(SIMDTernary* curr) { addRoot(curr); } |
| void visitSIMDShift(SIMDShift* curr) { addRoot(curr); } |
| void visitSIMDLoad(SIMDLoad* curr) { addRoot(curr); } |
| void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) { addRoot(curr); } |
| void visitMemoryInit(MemoryInit* curr) {} |
| void visitDataDrop(DataDrop* curr) {} |
| void visitMemoryCopy(MemoryCopy* curr) {} |
| void visitMemoryFill(MemoryFill* curr) {} |
| void visitConst(Const* curr) { |
| addRoot(curr, PossibleContents::literal(curr->value)); |
| } |
| void visitUnary(Unary* curr) { |
| // We could optimize cases like this using interpreter integration: if the |
| // input is a Literal, we could interpret the Literal result. However, if |
| // the input is a literal then the GUFA pass will emit a Const there, and |
| // the Precompute pass can use that later to interpret a result. That is, |
| // the input we need here, a constant, is already something GUFA can emit as |
| // an output. As a result, integrating the interpreter here would perhaps |
| // make compilation require fewer steps, but it wouldn't let us optimize |
| // more than we could before. |
| addRoot(curr); |
| } |
| void visitBinary(Binary* curr) { addRoot(curr); } |
| void visitSelect(Select* curr) { |
| receiveChildValue(curr->ifTrue, curr); |
| receiveChildValue(curr->ifFalse, curr); |
| } |
| void visitDrop(Drop* curr) {} |
| void visitMemorySize(MemorySize* curr) { addRoot(curr); } |
| void visitMemoryGrow(MemoryGrow* curr) { addRoot(curr); } |
| void visitRefNull(RefNull* curr) { |
| addRoot( |
| curr, |
| PossibleContents::literal(Literal::makeNull(curr->type.getHeapType()))); |
| } |
| void visitRefIsNull(RefIsNull* curr) { |
| // TODO: Optimize when possible. For example, if we can infer an exact type |
| // here which allows us to know the result then we should do so. This |
| // is unlike the case in visitUnary, above: the information that lets |
| // us optimize *cannot* be written into Binaryen IR (unlike a Literal) |
| // so using it during this pass allows us to optimize new things. |
| addRoot(curr); |
| } |
| void visitRefFunc(RefFunc* curr) { |
| addRoot( |
| curr, |
| PossibleContents::literal(Literal(curr->func, curr->type.getHeapType()))); |
| |
| // The presence of a RefFunc indicates the function may be called |
| // indirectly, so add the relevant connections for this particular function. |
| // We do so here in the RefFunc so that we only do it for functions that |
| // actually have a RefFunc. |
| auto* func = getModule()->getFunction(curr->func); |
| for (Index i = 0; i < func->getParams().size(); i++) { |
| info.links.push_back( |
| {SignatureParamLocation{func->type, i}, ParamLocation{func, i}}); |
| } |
| for (Index i = 0; i < func->getResults().size(); i++) { |
| info.links.push_back( |
| {ResultLocation{func, i}, SignatureResultLocation{func->type, i}}); |
| } |
| } |
| void visitRefEq(RefEq* curr) { |
| addRoot(curr); |
| } |
| void visitTableGet(TableGet* curr) { |
| // TODO: be more precise |
| addRoot(curr); |
| } |
| void visitTableSet(TableSet* curr) {} |
| void visitTableSize(TableSize* curr) { addRoot(curr); } |
| void visitTableGrow(TableGrow* curr) { addRoot(curr); } |
| void visitTableFill(TableFill* curr) { addRoot(curr); } |
| void visitTableCopy(TableCopy* curr) { addRoot(curr); } |
| void visitTableInit(TableInit* curr) {} |
| |
| void visitNop(Nop* curr) {} |
| void visitUnreachable(Unreachable* curr) {} |
| |
| #ifndef NDEBUG |
| // For now we only handle pops in a catch body, see visitTry(). To check for |
| // errors, use counter of the pops we handled and all the pops; those sums |
| // must agree at the end, or else we've seen something we can't handle. |
| Index totalPops = 0; |
| Index handledPops = 0; |
| #endif |
| |
| void visitPop(Pop* curr) { |
| #ifndef NDEBUG |
| totalPops++; |
| #endif |
| } |
| void visitRefI31(RefI31* curr) { |
| // TODO: optimize like struct references |
| addRoot(curr); |
| } |
| void visitI31Get(I31Get* curr) { |
| // TODO: optimize like struct references |
| addRoot(curr); |
| } |
| |
| void visitRefCast(RefCast* curr) { receiveChildValue(curr->ref, curr); } |
| void visitRefTest(RefTest* curr) { addRoot(curr); } |
| void visitBrOn(BrOn* curr) { |
| // TODO: optimize when possible |
| handleBreakValue(curr); |
| receiveChildValue(curr->ref, curr); |
| } |
| void visitRefAs(RefAs* curr) { |
| if (curr->op == ExternConvertAny || curr->op == AnyConvertExtern) { |
| // The external conversion ops emit something of a completely different |
| // type, which we must mark as a root. |
| addRoot(curr); |
| return; |
| } |
| |
| // All other RefAs operations flow values through while refining them (the |
| // filterExpressionContents method will handle the refinement |
| // automatically). |
| receiveChildValue(curr->value, curr); |
| } |
| |
| void visitLocalSet(LocalSet* curr) { |
| if (!isRelevant(curr->value->type)) { |
| return; |
| } |
| |
| // Tees flow out the value (receiveChildValue will see if this is a tee |
| // based on the type, automatically). |
| receiveChildValue(curr->value, curr); |
| |
| // We handle connecting local.gets to local.sets below, in visitFunction. |
| } |
| void visitLocalGet(LocalGet* curr) { |
| // We handle connecting local.gets to local.sets below, in visitFunction. |
| } |
| |
| // Globals read and write from their location. |
| void visitGlobalGet(GlobalGet* curr) { |
| if (isRelevant(curr->type)) { |
| // FIXME: we allow tuples in globals, so GlobalLocation needs a tupleIndex |
| // and we should loop here. |
| assert(!curr->type.isTuple()); |
| info.links.push_back( |
| {GlobalLocation{curr->name}, ExpressionLocation{curr, 0}}); |
| } |
| } |
| void visitGlobalSet(GlobalSet* curr) { |
| if (isRelevant(curr->value->type)) { |
| info.links.push_back( |
| {ExpressionLocation{curr->value, 0}, GlobalLocation{curr->name}}); |
| } |
| } |
| |
| // Iterates over a list of children and adds links to parameters and results |
| // as needed. The param/result functions receive the index and create the |
| // proper location for it. |
| template<typename T> |
| void handleCall(T* curr, |
| std::function<Location(Index)> makeParamLocation, |
| std::function<Location(Index)> makeResultLocation) { |
| Index i = 0; |
| for (auto* operand : curr->operands) { |
| if (isRelevant(operand->type)) { |
| info.links.push_back( |
| {ExpressionLocation{operand, 0}, makeParamLocation(i)}); |
| } |
| i++; |
| } |
| |
| // Add results, if anything flows out. |
| for (Index i = 0; i < curr->type.size(); i++) { |
| if (isRelevant(curr->type[i])) { |
| info.links.push_back( |
| {makeResultLocation(i), ExpressionLocation{curr, i}}); |
| } |
| } |
| |
| // If this is a return call then send the result to the function return as |
| // well. |
| if (curr->isReturn) { |
| auto results = getFunction()->getResults(); |
| for (Index i = 0; i < results.size(); i++) { |
| auto result = results[i]; |
| if (isRelevant(result)) { |
| info.links.push_back( |
| {makeResultLocation(i), ResultLocation{getFunction(), i}}); |
| } |
| } |
| } |
| } |
| |
| // Calls send values to params in their possible targets, and receive |
| // results. |
| |
| template<typename T> void handleDirectCall(T* curr, Name targetName) { |
| auto* target = getModule()->getFunction(targetName); |
| handleCall( |
| curr, |
| [&](Index i) { |
| assert(i <= target->getParams().size()); |
| return ParamLocation{target, i}; |
| }, |
| [&](Index i) { |
| assert(i <= target->getResults().size()); |
| return ResultLocation{target, i}; |
| }); |
| } |
| template<typename T> void handleIndirectCall(T* curr, HeapType targetType) { |
| // If the heap type is not a signature, which is the case for a bottom type |
| // (null) then nothing can be called. |
| if (!targetType.isSignature()) { |
| assert(targetType.isBottom()); |
| return; |
| } |
| handleCall( |
| curr, |
| [&](Index i) { |
| assert(i <= targetType.getSignature().params.size()); |
| return SignatureParamLocation{targetType, i}; |
| }, |
| [&](Index i) { |
| assert(i <= targetType.getSignature().results.size()); |
| return SignatureResultLocation{targetType, i}; |
| }); |
| } |
| template<typename T> void handleIndirectCall(T* curr, Type targetType) { |
| // If the type is unreachable, nothing can be called (and there is no heap |
| // type to get). |
| if (targetType != Type::unreachable) { |
| handleIndirectCall(curr, targetType.getHeapType()); |
| } |
| } |
| |
| void visitCall(Call* curr) { |
| Name targetName; |
| if (!Intrinsics(*getModule()).isCallWithoutEffects(curr)) { |
| // This is just a normal call. |
| handleDirectCall(curr, curr->target); |
| return; |
| } |
| // A call-without-effects receives a function reference and calls it, the |
| // same as a CallRef. When we have a flag for non-closed-world, we should |
| // handle this automatically by the reference flowing out to an import, |
| // which is what binaryen intrinsics look like. For now, to support use |
| // cases of a closed world but that also use this intrinsic, handle the |
| // intrinsic specifically here. (Without that, the closed world assumption |
| // makes us ignore the function ref that flows to an import, so we are not |
| // aware that it is actually called.) |
| auto* target = curr->operands.back(); |
| |
| // We must ignore the last element when handling the call - the target is |
| // used to perform the call, and not sent during the call. |
| curr->operands.pop_back(); |
| |
| if (auto* refFunc = target->dynCast<RefFunc>()) { |
| // We can see exactly where this goes. |
| handleDirectCall(curr, refFunc->func); |
| } else { |
| // We can't see where this goes. We must be pessimistic and assume it |
| // can call anything of the proper type, the same as a CallRef. (We could |
| // look at the possible contents of |target| during the flow, but that |
| // would require special logic like we have for StructGet etc., and the |
| // intrinsics will be lowered away anyhow, so just running after that is |
| // a workaround.) |
| handleIndirectCall(curr, target->type); |
| } |
| |
| // Restore the target. |
| curr->operands.push_back(target); |
| } |
| void visitCallIndirect(CallIndirect* curr) { |
| // TODO: the table identity could also be used here |
| // TODO: optimize the call target like CallRef |
| handleIndirectCall(curr, curr->heapType); |
| } |
| void visitCallRef(CallRef* curr) { |
| handleIndirectCall(curr, curr->target->type); |
| } |
| |
| // Creates a location for a null of a particular type and adds a root for it. |
| // Such roots are where the default value of an i32 local comes from, or the |
| // value in a ref.null. |
| Location getNullLocation(Type type) { |
| auto location = NullLocation{type}; |
| addRoot(location, PossibleContents::literal(Literal::makeZero(type))); |
| return location; |
| } |
| |
| // Iterates over a list of children and adds links from them. The target of |
| // those link is created using a function that is passed in, which receives |
| // the index of the child. |
| void linkChildList(ExpressionList& operands, |
| std::function<Location(Index)> makeTarget) { |
| Index i = 0; |
| for (auto* operand : operands) { |
| // This helper is not used from places that allow a tuple (hence we can |
| // hardcode the index 0 a few lines down). |
| assert(!operand->type.isTuple()); |
| |
| if (isRelevant(operand->type)) { |
| info.links.push_back({ExpressionLocation{operand, 0}, makeTarget(i)}); |
| } |
| i++; |
| } |
| } |
| |
| void visitStructNew(StructNew* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| auto type = curr->type.getHeapType(); |
| if (curr->isWithDefault()) { |
| // Link the default values to the struct's fields. |
| auto& fields = type.getStruct().fields; |
| for (Index i = 0; i < fields.size(); i++) { |
| info.links.push_back( |
| {getNullLocation(fields[i].type), DataLocation{type, i}}); |
| } |
| } else { |
| // Link the operands to the struct's fields. |
| linkChildList(curr->operands, [&](Index i) { |
| return DataLocation{type, i}; |
| }); |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| } |
| void visitArrayNew(ArrayNew* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| auto type = curr->type.getHeapType(); |
| if (curr->init) { |
| info.links.push_back( |
| {ExpressionLocation{curr->init, 0}, DataLocation{type, 0}}); |
| } else { |
| info.links.push_back( |
| {getNullLocation(type.getArray().element.type), DataLocation{type, 0}}); |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| } |
| void visitArrayNewData(ArrayNewData* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| auto heapType = curr->type.getHeapType(); |
| Type elemType = heapType.getArray().element.type; |
| addRoot(DataLocation{heapType, 0}, PossibleContents::fromType(elemType)); |
| } |
| void visitArrayNewElem(ArrayNewElem* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| auto heapType = curr->type.getHeapType(); |
| Type segType = getModule()->getElementSegment(curr->segment)->type; |
| addRoot(DataLocation{heapType, 0}, PossibleContents::fromType(segType)); |
| return; |
| } |
| void visitArrayNewFixed(ArrayNewFixed* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| if (!curr->values.empty()) { |
| auto type = curr->type.getHeapType(); |
| linkChildList(curr->values, [&](Index i) { |
| // The index i is ignored, as we do not track indexes in Arrays - |
| // everything is modeled as if at index 0. |
| return DataLocation{type, 0}; |
| }); |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| } |
| |
| // Struct operations access the struct fields' locations. |
| void visitStructGet(StructGet* curr) { |
| if (!isRelevant(curr->ref)) { |
| // If references are irrelevant then we will ignore them, and we won't |
| // have information about this struct.get's reference, which means we |
| // won't have information to compute relevant values for this struct.get. |
| // Instead, just mark this as an unknown value (root). |
| addRoot(curr); |
| return; |
| } |
| // The struct.get will receive different values depending on the contents |
| // in the reference, so mark us as the parent of the ref, and we will |
| // handle all of this in a special way during the flow. Note that we do |
| // not even create a DataLocation here; anything that we need will be |
| // added during the flow. |
| addChildParentLink(curr->ref, curr); |
| } |
| void visitStructSet(StructSet* curr) { |
| if (curr->ref->type == Type::unreachable) { |
| return; |
| } |
| // See comment on visitStructGet. Here we also connect the value. |
| addChildParentLink(curr->ref, curr); |
| addChildParentLink(curr->value, curr); |
| } |
| // Array operations access the array's location, parallel to how structs work. |
| void visitArrayGet(ArrayGet* curr) { |
| if (!isRelevant(curr->ref)) { |
| addRoot(curr); |
| return; |
| } |
| addChildParentLink(curr->ref, curr); |
| } |
| void visitArraySet(ArraySet* curr) { |
| if (curr->ref->type == Type::unreachable) { |
| return; |
| } |
| addChildParentLink(curr->ref, curr); |
| addChildParentLink(curr->value, curr); |
| } |
| |
| void visitArrayLen(ArrayLen* curr) { |
| // TODO: optimize when possible (perhaps we can infer a Literal for the |
| // length) |
| addRoot(curr); |
| } |
| void visitArrayCopy(ArrayCopy* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| // Our flow handling of GC data is not simple: we have special code for each |
| // read and write instruction. Therefore, to avoid adding special code for |
| // ArrayCopy, model it as a combination of an ArrayRead and ArrayWrite, by |
| // just emitting fake expressions for those. The fake expressions are not |
| // part of the main IR, which is potentially confusing during debugging, |
| // however, which is a downside. |
| Builder builder(*getModule()); |
| auto* get = |
| builder.makeArrayGet(curr->srcRef, curr->srcIndex, curr->srcRef->type); |
| visitArrayGet(get); |
| auto* set = builder.makeArraySet(curr->destRef, curr->destIndex, get); |
| visitArraySet(set); |
| } |
| void visitArrayFill(ArrayFill* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| // See ArrayCopy, above. |
| Builder builder(*getModule()); |
| auto* set = builder.makeArraySet(curr->ref, curr->index, curr->value); |
| visitArraySet(set); |
| } |
| template<typename ArrayInit> void visitArrayInit(ArrayInit* curr) { |
| // Check for both unreachability and a bottom type. In either case we have |
| // no work to do, and would error on an assertion below in finding the array |
| // type. |
| auto field = GCTypeUtils::getField(curr->ref->type); |
| if (!field) { |
| return; |
| } |
| // See ArrayCopy, above. Here an additional complexity is that we need to |
| // model the read from the segment. As in TableGet, for now we just assume |
| // any value is possible there (a root in the graph), which we set up |
| // manually here as a fake unknown value, using a fake local.get that we |
| // root. |
| // TODO: be more precise about what is in the table |
| auto valueType = field->type; |
| Builder builder(*getModule()); |
| auto* get = builder.makeLocalGet(-1, valueType); |
| addRoot(get); |
| auto* set = builder.makeArraySet(curr->ref, curr->index, get); |
| visitArraySet(set); |
| } |
| void visitArrayInitData(ArrayInitData* curr) { visitArrayInit(curr); } |
| void visitArrayInitElem(ArrayInitElem* curr) { visitArrayInit(curr); } |
| void visitStringNew(StringNew* curr) { |
| if (curr->type == Type::unreachable) { |
| return; |
| } |
| addRoot(curr, PossibleContents::exactType(curr->type)); |
| } |
| void visitStringConst(StringConst* curr) { |
| addRoot(curr, |
| PossibleContents::literal(Literal(std::string(curr->string.str)))); |
| } |
| void visitStringMeasure(StringMeasure* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitStringEncode(StringEncode* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitStringConcat(StringConcat* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitStringEq(StringEq* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitStringWTF16Get(StringWTF16Get* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitStringSliceWTF(StringSliceWTF* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| |
| // TODO: Model which throws can go to which catches. For now, anything thrown |
| // is sent to the location of that tag, and any catch of that tag can |
| // read them. |
| void visitTry(Try* curr) { |
| receiveChildValue(curr->body, curr); |
| for (auto* catchBody : curr->catchBodies) { |
| receiveChildValue(catchBody, curr); |
| } |
| |
| auto numTags = curr->catchTags.size(); |
| for (Index tagIndex = 0; tagIndex < numTags; tagIndex++) { |
| auto tag = curr->catchTags[tagIndex]; |
| auto* body = curr->catchBodies[tagIndex]; |
| |
| auto params = getModule()->getTag(tag)->sig.params; |
| if (params.size() == 0) { |
| continue; |
| } |
| |
| // Find the pop of the tag's contents. The body must start with such a |
| // pop, which might be of a tuple. |
| auto* pop = EHUtils::findPop(body); |
| // There must be a pop since we checked earlier if it was an empty tag, |
| // and would not reach here. |
| assert(pop); |
| assert(pop->type.size() == params.size()); |
| for (Index i = 0; i < params.size(); i++) { |
| if (isRelevant(params[i])) { |
| info.links.push_back( |
| {TagLocation{tag, i}, ExpressionLocation{pop, i}}); |
| } |
| } |
| |
| #ifndef NDEBUG |
| // This pop was in the position we can handle, note that (see visitPop |
| // for details). |
| handledPops++; |
| #endif |
| } |
| } |
| void visitTryTable(TryTable* curr) { |
| receiveChildValue(curr->body, curr); |
| |
| // Connect caught tags with their branch targets, and materialize non-null |
| // exnref values. |
| auto numTags = curr->catchTags.size(); |
| for (Index tagIndex = 0; tagIndex < numTags; tagIndex++) { |
| auto tag = curr->catchTags[tagIndex]; |
| auto target = curr->catchDests[tagIndex]; |
| |
| Index exnrefIndex = 0; |
| if (tag.is()) { |
| auto params = getModule()->getTag(tag)->sig.params; |
| |
| for (Index i = 0; i < params.size(); i++) { |
| if (isRelevant(params[i])) { |
| info.links.push_back( |
| {TagLocation{tag, i}, getBreakTargetLocation(target, i)}); |
| } |
| } |
| |
| exnrefIndex = params.size(); |
| } |
| |
| if (curr->catchRefs[tagIndex]) { |
| auto location = CaughtExnRefLocation{}; |
| addRoot(location, |
| PossibleContents::fromType(Type(HeapType::exn, NonNullable))); |
| info.links.push_back( |
| {location, getBreakTargetLocation(target, exnrefIndex)}); |
| } |
| } |
| } |
| void visitThrow(Throw* curr) { |
| auto& operands = curr->operands; |
| if (!isRelevant(operands)) { |
| return; |
| } |
| |
| auto tag = curr->tag; |
| for (Index i = 0; i < curr->operands.size(); i++) { |
| info.links.push_back( |
| {ExpressionLocation{operands[i], 0}, TagLocation{tag, i}}); |
| } |
| } |
| void visitRethrow(Rethrow* curr) {} |
| void visitThrowRef(ThrowRef* curr) {} |
| |
| void visitTupleMake(TupleMake* curr) { |
| if (isRelevant(curr->type)) { |
| for (Index i = 0; i < curr->operands.size(); i++) { |
| info.links.push_back({ExpressionLocation{curr->operands[i], 0}, |
| ExpressionLocation{curr, i}}); |
| } |
| } |
| } |
| void visitTupleExtract(TupleExtract* curr) { |
| if (isRelevant(curr->type)) { |
| info.links.push_back({ExpressionLocation{curr->tuple, curr->index}, |
| ExpressionLocation{curr, 0}}); |
| } |
| } |
| |
| // Adds a result to the current function, such as from a return or the value |
| // that flows out. |
| void addResult(Expression* value) { |
| if (value && isRelevant(value->type)) { |
| for (Index i = 0; i < value->type.size(); i++) { |
| info.links.push_back( |
| {ExpressionLocation{value, i}, ResultLocation{getFunction(), i}}); |
| } |
| } |
| } |
| |
| void visitReturn(Return* curr) { addResult(curr->value); } |
| |
| void visitContBind(ContBind* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitContNew(ContNew* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitResume(Resume* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| void visitSuspend(Suspend* curr) { |
| // TODO: optimize when possible |
| addRoot(curr); |
| } |
| |
| void visitFunction(Function* func) { |
| // Functions with a result can flow a value out from their body. |
| addResult(func->body); |
| |
| // See visitPop(). |
| assert(handledPops == totalPops); |
| |
| // Handle local.get/sets: each set must write to the proper gets. |
| // |
| // Note that we do not use LocalLocation because LocalGraph gives us more |
| // precise information: we generate direct links from sets to relevant gets |
| // rather than consider each local index a single location, which |
| // LocalLocation does. (LocalLocation is useful in cases where we do need a |
| // single location, such as when we consider what type to give the local; |
| // the type must be the same for all gets of that local.) |
| LocalGraph localGraph(func, getModule()); |
| |
| for (auto& [curr, _] : localGraph.locations) { |
| auto* get = curr->dynCast<LocalGet>(); |
| if (!get) { |
| continue; |
| } |
| |
| auto index = get->index; |
| auto type = func->getLocalType(index); |
| if (!isRelevant(type)) { |
| continue; |
| } |
| |
| // Each get reads from its relevant sets. |
| for (auto* set : localGraph.getSets(get)) { |
| for (Index i = 0; i < type.size(); i++) { |
| Location source; |
| if (set) { |
| // This is a normal local.set. |
| source = ExpressionLocation{set->value, i}; |
| } else if (getFunction()->isParam(index)) { |
| // This is a parameter. |
| source = ParamLocation{getFunction(), index}; |
| } else { |
| // This is the default value from the function entry, a null. |
| source = getNullLocation(type[i]); |
| } |
| info.links.push_back({source, ExpressionLocation{get, i}}); |
| } |
| } |
| } |
| } |
| |
| // Helpers |
| |
| // Returns the location of a break target by the name (e.g. returns the |
| // location of a block, if the name is the name of a block). Also receives the |
| // index in a tuple, if this is part of a tuple value. |
| Location getBreakTargetLocation(Name target, Index i) { |
| return ExpressionLocation{findBreakTarget(target), i}; |
| } |
| |
| // Handles the value sent in a break instruction. Does not handle anything |
| // else like the condition etc. |
| void handleBreakValue(Expression* curr) { |
| BranchUtils::operateOnScopeNameUsesAndSentValues( |
| curr, [&](Name target, Expression* value) { |
| if (value && isRelevant(value->type)) { |
| for (Index i = 0; i < value->type.size(); i++) { |
| // Breaks send the contents of the break value to the branch target |
| // that the break goes to. |
| info.links.push_back({ExpressionLocation{value, i}, |
| getBreakTargetLocation(target, i)}); |
| } |
| } |
| }); |
| } |
| |
| // Connect a child's value to the parent, that is, all content in the child is |
| // now considered possible in the parent as well. |
| void receiveChildValue(Expression* child, Expression* parent) { |
| if (isRelevant(parent) && isRelevant(child)) { |
| // The tuple sizes must match (or, if not a tuple, the size should be 1 in |
| // both cases). |
| assert(child->type.size() == parent->type.size()); |
| for (Index i = 0; i < child->type.size(); i++) { |
| info.links.push_back( |
| {ExpressionLocation{child, i}, ExpressionLocation{parent, i}}); |
| } |
| } |
| } |
| |
| // See the comment on CollectedFuncInfo::childParents. |
| void addChildParentLink(Expression* child, Expression* parent) { |
| if (isRelevant(child->type)) { |
| info.childParents[child] = parent; |
| } |
| } |
| |
| // Adds a root, if the expression is relevant. If the value is not specified, |
| // mark the root as containing Many (which is the common case, so avoid |
| // verbose code). |
| void addRoot(Expression* curr, |
| PossibleContents contents = PossibleContents::many()) { |
| // TODO Use a cone type here when relevant |
| if (isRelevant(curr)) { |
| if (contents.isMany()) { |
| contents = PossibleContents::fromType(curr->type); |
| } |
| addRoot(ExpressionLocation{curr, 0}, contents); |
| } |
| } |
| |
| // As above, but given an arbitrary location and not just an expression. |
| void addRoot(Location loc, |
| PossibleContents contents = PossibleContents::many()) { |
| info.roots.emplace_back(loc, contents); |
| } |
| }; |
| |
| // TrapsNeverHappen Oracle. This makes inferences *backwards* from traps that we |
| // know will not happen due to the TNH assumption. For example, |
| // |
| // (local.get $a) |
| // (ref.cast $B (local.get $a)) |
| // |
| // The cast happens right after the first local.get, and we assume it does not |
| // fail, so the local must contain a B, even though the IR only has A. |
| // |
| // This analysis complements ContentOracle, which uses this analysis internally. |
| // ContentOracle does a forward flow analysis (as content moves from place to |
| // place) which increases from "nothing", while this does a backwards analysis |
| // that decreases from "everything" (or rather, from the type declared in the |
| // IR), so the two cannot be done at once. |
| // |
| // TODO: We could cycle between this and ContentOracle for repeated |
| // improvements. |
| // TODO: This pass itself could benefit from internal cycles. |
| // |
| // This analysis mainly focuses on information across calls, as simple backwards |
| // inference is done in OptimizeCasts. Note that it is not needed if a call is |
| // inlined, obviously, and so it mostly helps cases like functions too large to |
| // inline, or when optimizing for size, or with indirect calls. |
| // |
| // We track cast parameters by mapping an index to the type it is definitely |
| // cast to if the function is entered. From that information we can infer things |
| // about the values being sent to the function (which we can assume must have |
| // the right type so that the casts do not trap). |
| using CastParams = std::unordered_map<Index, Type>; |
| |
| // The information we collect and utilize as we operate in parallel in each |
| // function. |
| struct TNHInfo { |
| CastParams castParams; |
| |
| // TODO: Returns as well: when we see (ref.cast (call $foo)) in all callers |
| // then we can refine inside $foo (in closed world). |
| |
| // We gather calls in parallel in order to process them later. |
| std::vector<Call*> calls; |
| std::vector<CallRef*> callRefs; |
| |
| // Note if a function body definitely traps. |
| bool traps = false; |
| |
| // We gather inferences in parallel and combine them at the end. |
| std::unordered_map<Expression*, PossibleContents> inferences; |
| }; |
| |
| class TNHOracle : public ModuleUtils::ParallelFunctionAnalysis<TNHInfo> { |
| const PassOptions& options; |
| |
| public: |
| using Parent = ModuleUtils::ParallelFunctionAnalysis<TNHInfo>; |
| TNHOracle(Module& wasm, const PassOptions& options) |
| : Parent(wasm, |
| [this, &options](Function* func, TNHInfo& info) { |
| scan(func, info, options); |
| }), |
| options(options) { |
| |
| // After the scanning phase that we run in the constructor, continue to the |
| // second phase of analysis: inference. |
| infer(); |
| } |
| |
| // Get the type we inferred was possible at a location. |
| PossibleContents getContents(Expression* curr) { |
| auto naiveContents = PossibleContents::fullConeType(curr->type); |
| |
| // If we inferred nothing, use the naive type. |
| auto iter = inferences.find(curr); |
| if (iter == inferences.end()) { |
| return naiveContents; |
| } |
| |
| auto& contents = iter->second; |
| // We only store useful contents that improve on the naive estimate that |
| // uses the type in the IR. |
| assert(contents != naiveContents); |
| return contents; |
| } |
| |
| private: |
| // Maps expressions to the content we inferred there. If an expression is not |
| // here then expression->type (the type in Binaryen IR) is all we have. |
| std::unordered_map<Expression*, PossibleContents> inferences; |
| |
| // Phase 1: Scan to find cast parameters and calls. This operates on a single |
| // function, and is called in parallel. |
| void scan(Function* func, TNHInfo& info, const PassOptions& options); |
| |
| // Phase 2: Infer contents based on what we scanned. |
| void infer(); |
| |
| // Optimize one specific call (or call_ref). |
| void optimizeCallCasts(Expression* call, |
| const ExpressionList& operands, |
| const CastParams& targetCastParams, |
| const analysis::CFGBlockIndexes& blockIndexes, |
| TNHInfo& info); |
| }; |
| |
| void TNHOracle::scan(Function* func, |
| TNHInfo& info, |
| const PassOptions& options) { |
| if (func->imported()) { |
| return; |
| } |
| |
| // Gather parameters that are definitely cast in the function entry. |
| struct EntryScanner : public LinearExecutionWalker<EntryScanner> { |
| Module& wasm; |
| const PassOptions& options; |
| TNHInfo& info; |
| |
| EntryScanner(Module& wasm, const PassOptions& options, TNHInfo& info) |
| : wasm(wasm), options(options), info(info) {} |
| |
| // Note while we are still in the entry (first) block. |
| bool inEntryBlock = true; |
| |
| static void doNoteNonLinear(EntryScanner* self, Expression** currp) { |
| // This is the end of the first basic block. |
| self->inEntryBlock = false; |
| } |
| |
| void visitCall(Call* curr) { info.calls.push_back(curr); } |
| |
| void visitCallRef(CallRef* curr) { |
| // We can only optimize call_ref in closed world, as otherwise the |
| // call can go somewhere we can't see. |
| if (options.closedWorld) { |
| info.callRefs.push_back(curr); |
| } |
| } |
| |
| void visitRefAs(RefAs* curr) { |
| if (curr->op == RefAsNonNull) { |
| noteCast(curr->value, curr->type); |
| } |
| } |
| void visitRefCast(RefCast* curr) { noteCast(curr->ref, curr->type); } |
| |
| // Note a cast of an expression to a particular type. |
| void noteCast(Expression* expr, Type type) { |
| if (!inEntryBlock) { |
| return; |
| } |
| |
| auto* fallthrough = Properties::getFallthrough(expr, options, wasm); |
| if (auto* get = fallthrough->dynCast<LocalGet>()) { |
| // To optimize, this needs to be a param, and of a useful type. |
| // |
| // Note that if we see more than one cast we keep the first one. This is |
| // not important in optimized code, as the most refined cast would be |
| // the only one to exist there, so it's ok to keep things simple here. |
| if (getFunction()->isParam(get->index) && type != get->type && |
| info.castParams.count(get->index) == 0) { |
| info.castParams[get->index] = type; |
| } |
| } |
| } |
| |
| // Operations that trap on null are equivalent to casts to non-null, in that |
| // they imply that their input is non-null if traps never happen. |
| // |
| // We only look at them if the input is actually nullable, since if they |
| // are non-nullable then we can add no information. (This is equivalent |
| // to the handling of RefAsNonNull above, in the sense that in optimized |
| // code the RefAs will not appear if the input is already non-nullable). |
| // This function is called with the reference that will be trapped on, |
| // if it is null. |
| void notePossibleTrap(Expression* expr) { |
| if (!expr->type.isRef() || expr->type.isNonNullable()) { |
| return; |
| } |
| noteCast(expr, Type(expr->type.getHeapType(), NonNullable)); |
| } |
| |
| void visitStructGet(StructGet* curr) { notePossibleTrap(curr->ref); } |
| void visitStructSet(StructSet* curr) { notePossibleTrap(curr->ref); } |
| void visitArrayGet(ArrayGet* curr) { notePossibleTrap(curr->ref); } |
| void visitArraySet(ArraySet* curr) { notePossibleTrap(curr->ref); } |
| void visitArrayLen(ArrayLen* curr) { notePossibleTrap(curr->ref); } |
| void visitArrayCopy(ArrayCopy* curr) { |
| notePossibleTrap(curr->srcRef); |
| notePossibleTrap(curr->destRef); |
| } |
| void visitArrayFill(ArrayFill* curr) { notePossibleTrap(curr->ref); } |
| void visitArrayInitData(ArrayInitData* curr) { |
| notePossibleTrap(curr->ref); |
| } |
| void visitArrayInitElem(ArrayInitElem* curr) { |
| notePossibleTrap(curr->ref); |
| } |
| |
| void visitFunction(Function* curr) { |
| // In optimized TNH code, a function that always traps will be turned |
| // into a singleton unreachable instruction, so it is enough to check |
| // for that. |
| if (curr->body->is<Unreachable>()) { |
| info.traps = true; |
| } |
| } |
| } scanner(wasm, options, info); |
| scanner.walkFunction(func); |
| } |
| |
| void TNHOracle::infer() { |
| // Phase 2: Inside each function, optimize calls based on the cast params of |
| // the called function (which we noted during phase 1). |
| // |
| // Specifically, each time we call a target that will cast a param, we can |
| // infer that the param must have that type (or else we'd trap, but we are |
| // assuming traps never happen). |
| // |
| // While doing so we must be careful of control flow transfers right before |
| // the call: |
| // |
| // (call $target |
| // (A) |
| // (br_if ..) |
| // (B) |
| // ) |
| // |
| // If we branch in the br_if then we might execute A and then something else |
| // entirely, and not reach B or the call. In that case we can't infer anything |
| // about A (perhaps, for example, we branch away exactly when A would fail the |
| // cast). Therefore in the optimization below we only optimize code that, if |
| // reached, will definitely reach the call, like B. |
| // |
| // TODO: Some control flow transfers are ok, so long as we must reach the |
| // call, like if we replace the br_if with an if with two arms (and no |
| // branches in either). |
| // TODO: We can also infer backwards past basic blocks from casts, even |
| // without calls. Any cast tells us something about the uses of that |
| // value that must reach the cast. |
| // TODO: We can do a whole-program flow of this information. |
| |
| // For call_ref, we need to know which functions belong to each type. Gather |
| // that first. This map will map each heap type to each function that is of |
| // that type or a subtype, i.e., might be called when that type is seen in a |
| // call_ref target. |
| std::unordered_map<HeapType, std::vector<Function*>> typeFunctions; |
| if (options.closedWorld) { |
| for (auto& func : wasm.functions) { |
| auto type = func->type; |
| auto& info = map[wasm.getFunction(func->name)]; |
| if (info.traps) { |
| // This function definitely traps, so we can assume it is never called, |
| // and don't need to even bother putting it in |typeFunctions|. |
| continue; |
| } |
| while (1) { |
| typeFunctions[type].push_back(func.get()); |
| if (auto super = type.getDeclaredSuperType()) { |
| type = *super; |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| |
| doAnalysis([&](Function* func, TNHInfo& info) { |
| // We will need some CFG information below. Computing this is expensive, so |
| // only do it if we find optimization opportunities. |
| std::optional<analysis::CFGBlockIndexes> blockIndexes; |
| |
| auto ensureCFG = [&]() { |
| if (!blockIndexes) { |
| auto cfg = analysis::CFG::fromFunction(func); |
| blockIndexes = analysis::CFGBlockIndexes(cfg); |
| } |
| }; |
| |
| for (auto* call : info.calls) { |
| auto& targetInfo = map[wasm.getFunction(call->target)]; |
| |
| auto& targetCastParams = targetInfo.castParams; |
| if (targetCastParams.empty()) { |
| continue; |
| } |
| |
| // This looks promising, create the CFG if we haven't already, and |
| // optimize. |
| ensureCFG(); |
| optimizeCallCasts( |
| call, call->operands, targetCastParams, *blockIndexes, info); |
| |
| // Note that we don't need to do anything for targetInfo.traps for a |
| // direct call: the inliner will inline the singleton unreachable in the |
| // target function anyhow. |
| } |
| |
| for (auto* call : info.callRefs) { |
| auto targetType = call->target->type; |
| if (!targetType.isRef()) { |
| // This is unreachable or null, and other passes will optimize that. |
| continue; |
| } |
| |
| // We should only get here in a closed world, in which we know which |
| // functions might be called (the scan phase only notes callRefs if we are |
| // in fact in a closed world). |
| assert(options.closedWorld); |
| |
| auto iter = typeFunctions.find(targetType.getHeapType()); |
| if (iter == typeFunctions.end()) { |
| // No function exists of this type, so the call_ref will trap. We can |
| // mark the target as empty, which has the identical effect. |
| info.inferences[call->target] = PossibleContents::none(); |
| continue; |
| } |
| |
| // Go through the targets and ignore any that will trap. That will leave |
| // us with the actually possible targets. |
| // |
| // Note that we did not even add functions that certainly trap to |
| // |typeFunctions| at all, so those are already excluded. |
| const auto& targets = iter->second; |
| std::vector<Function*> possibleTargets; |
| for (Function* target : targets) { |
| auto& targetInfo = map[target]; |
| |
| // If any of our operands will fail a cast, then we will trap. |
| bool traps = false; |
| for (auto& [castIndex, castType] : targetInfo.castParams) { |
| auto operandType = call->operands[castIndex]->type; |
| auto result = GCTypeUtils::evaluateCastCheck(operandType, castType); |
| if (result == GCTypeUtils::Failure) { |
| traps = true; |
| break; |
| } |
| } |
| if (!traps) { |
| possibleTargets.push_back(target); |
| } |
| } |
| |
| if (possibleTargets.empty()) { |
| // No target is possible. |
| info.inferences[call->target] = PossibleContents::none(); |
| continue; |
| } |
| |
| if (possibleTargets.size() == 1) { |
| // There is exactly one possible call target, which means we can |
| // actually infer what the call_ref is calling. Add that as an |
| // inference. |
| // TODO: We could also optimizeCallCasts() here, but it is low priority |
| // as other opts will make this call direct later, after which a |
| // lot of other optimizations become possible anyhow. |
| auto target = possibleTargets[0]->name; |
| info.inferences[call->target] = PossibleContents::literal( |
| Literal(target, wasm.getFunction(target)->type)); |
| continue; |
| } |
| |
| // More than one target exists: apply the intersection of their |
| // constraints. That is, if they all cast the k-th parameter to type T (or |
| // more) than we can apply that here. |
| auto numParams = call->operands.size(); |
| std::vector<Type> sharedCastParamsVec(numParams, Type::unreachable); |
| for (auto* target : possibleTargets) { |
| auto& targetInfo = map[target]; |
| auto& targetCastParams = targetInfo.castParams; |
| for (Index i = 0; i < numParams; i++) { |
| auto iter = targetCastParams.find(i); |
| if (iter == targetCastParams.end()) { |
| // If the target does not cast, we cannot do anything with this |
| // parameter; mark it as unoptimizable with an impossible type. |
| sharedCastParamsVec[i] = Type::none; |
| continue; |
| } |
| |
| // This function casts this param. Combine this with existing info. |
| auto castType = iter->second; |
| sharedCastParamsVec[i] = |
| Type::getLeastUpperBound(sharedCastParamsVec[i], castType); |
| } |
| } |
| |
| // Build a map of the interesting cast params we found, and if there are |
| // any, optimize using them. |
| CastParams sharedCastParams; |
| for (Index i = 0; i < numParams; i++) { |
| auto type = sharedCastParamsVec[i]; |
| if (type != Type::none) { |
| sharedCastParams[i] = type; |
| } |
| } |
| if (!sharedCastParams.empty()) { |
| ensureCFG(); |
| optimizeCallCasts( |
| call, call->operands, sharedCastParams, *blockIndexes, info); |
| } |
| } |
| }); |
| |
| // Combine all of our inferences from the parallel phase above us into the |
| // final list of inferences. |
| for (auto& [_, info] : map) { |
| for (auto& [expr, contents] : info.inferences) { |
| inferences[expr] = contents; |
| } |
| } |
| } |
| |
| void TNHOracle::optimizeCallCasts(Expression* call, |
| const ExpressionList& operands, |
| const CastParams& targetCastParams, |
| const analysis::CFGBlockIndexes& blockIndexes, |
| TNHInfo& info) { |
| // Optimize in the same basic block as the call: all instructions still in |
| // that block will definitely execute if the call is reached. We will do that |
| // by going backwards through the call's operands and fallthrough values, and |
| // optimizing while we are still in the same basic block. |
| auto callBlockIndex = blockIndexes.get(call); |
| |
| // Operands must exist since there is a cast param, so a param exists. |
| assert(operands.size() > 0); |
| for (int i = int(operands.size() - 1); i >= 0; i--) { |
| auto* operand = operands[i]; |
| |
| if (blockIndexes.get(operand) != callBlockIndex) { |
| // Control flow might transfer; stop. |
| break; |
| } |
| |
| auto iter = targetCastParams.find(i); |
| if (iter == targetCastParams.end()) { |
| // This param is not cast, so skip it. |
| continue; |
| } |
| |
| // If the call executes then this parameter is definitely reached (since it |
| // is in the same basic block), and we know that it will be cast to a more |
| // refined type. |
| auto castType = iter->second; |
| |
| // Apply what we found to the operand and also to its fallthrough |
| // values. |
| // |
| // At the loop entry |curr| has been checked for a possible control flow |
| // transfer (and that problem ruled out). |
| auto* curr = operand; |
| while (1) { |
| // Note the type if it is useful. |
| if (castType != curr->type) { |
| // There are two constraints on this location: any value there must |
| // be of the declared type (curr->type) and also the cast type, so |
| // we know only their intersection can appear here. |
| auto declared = PossibleContents::fullConeType(curr->type); |
| auto intersection = PossibleContents::fullConeType(castType); |
| intersection.intersect(declared); |
| if (intersection.isConeType()) { |
| auto intersectionType = intersection.getType(); |
| if (intersectionType != curr->type) { |
| // We inferred a more refined type. |
| info.inferences[curr] = intersection; |
| } |
| } else { |
| // Otherwise, the intersection can be a null (if the heap types are |
| // incompatible, but a null is allowed), or empty. We can apply |
| // either. |
| assert(intersection.isNull() || intersection.isNone()); |
| info.inferences[curr] = intersection; |
| } |
| } |
| |
| auto* next = Properties::getImmediateFallthrough(curr, options, wasm); |
| if (next == curr) { |
| // No fallthrough, we're done with this param. |
| break; |
| } |
| |
| // There is a fallthrough. Check for a control flow transfer. |
| if (blockIndexes.get(next) != callBlockIndex) { |
| // Control flow might transfer; stop. We also cannot look at any further |
| // operands (if a child of this operand is in another basic block from |
| // the call, so are previous operands), so return from the entire |
| // function. |
| return; |
| } |
| |
| // Continue to the fallthrough. |
| curr = next; |
| } |
| } |
| } |
| |
| // Main logic for building data for the flow analysis and then performing that |
| // analysis. |
| struct Flower { |
| Module& wasm; |
| const PassOptions& options; |
| |
| Flower(Module& wasm, const PassOptions& options); |
| |
| // Each LocationIndex will have one LocationInfo that contains the relevant |
| // information we need for each location. |
| struct LocationInfo { |
| // The location at this index. |
| Location location; |
| |
| // The possible contents in that location. |
| PossibleContents contents; |
| |
| // A list of the target locations to which this location sends content. |
| // TODO: benchmark SmallVector<1> here, as commonly there may be a single |
| // target (an expression has one parent) |
| std::vector<LocationIndex> targets; |
| |
| LocationInfo(Location location) : location(location) {} |
| }; |
| |
| // Maps location indexes to the info stored there, as just described above. |
| std::vector<LocationInfo> locations; |
| |
| // Reverse mapping of locations to their indexes. |
| std::unordered_map<Location, LocationIndex> locationIndexes; |
| |
| const Location& getLocation(LocationIndex index) { |
| assert(index < locations.size()); |
| return locations[index].location; |
| } |
| |
| PossibleContents& getContents(LocationIndex index) { |
| assert(index < locations.size()); |
| return locations[index].contents; |
| } |
| |
| // Check what we know about the type of an expression, using static |
| // information from a TrapsNeverHappen oracle (see TNHOracle), if we have one. |
| PossibleContents getTNHContents(Expression* curr) { |
| if (!tnhOracle) { |
| // No oracle; just use the type in the IR. |
| return PossibleContents::fullConeType(curr->type); |
| } |
| return tnhOracle->getContents(curr); |
| } |
| |
| private: |
| std::unique_ptr<TNHOracle> tnhOracle; |
| |
| std::vector<LocationIndex>& getTargets(LocationIndex index) { |
| assert(index < locations.size()); |
| return locations[index].targets; |
| } |
| |
| // Convert the data into the efficient LocationIndex form we will use during |
| // the flow analysis. This method returns the index of a location, allocating |
| // one if this is the first time we see it. |
| LocationIndex getIndex(const Location& location) { |
| auto iter = locationIndexes.find(location); |
| if (iter != locationIndexes.end()) { |
| return iter->second; |
| } |
| |
| // Allocate a new index here. |
| size_t index = locations.size(); |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " new index " << index << " for "; |
| dump(location); |
| #endif |
| if (index >= std::numeric_limits<LocationIndex>::max()) { |
| // 32 bits should be enough since each location takes at least one byte |
| // in the binary, and we don't have 4GB wasm binaries yet... do we? |
| Fatal() << "Too many locations for 32 bits"; |
| } |
| locations.emplace_back(location); |
| locationIndexes[location] = index; |
| |
| return index; |
| } |
| |
| bool hasIndex(const Location& location) { |
| return locationIndexes.find(location) != locationIndexes.end(); |
| } |
| |
| IndexLink getIndexes(const LocationLink& link) { |
| return {getIndex(link.from), getIndex(link.to)}; |
| } |
| |
| // See the comment on CollectedFuncInfo::childParents. This is the merged info |
| // from all the functions and the global scope. |
| std::unordered_map<LocationIndex, LocationIndex> childParents; |
| |
| // The work remaining to do during the flow: locations that we need to flow |
| // content from, after new content reached them. |
| // |
| // Using a set here is efficient as multiple updates may arrive to a location |
| // before we get to processing it. |
| // |
| // The items here could be {location, newContents}, but it is more efficient |
| // to have already written the new contents to the main data structure. That |
| // avoids larger data here, and also, updating the contents as early as |
| // possible is helpful as anything reading them meanwhile (before we get to |
| // their work item in the queue) will see the newer value, possibly avoiding |
| // flowing an old value that would later be overwritten. |
| // |
| // This must be ordered to avoid nondeterminism. The problem is that our |
| // operations are imprecise and so the transitive property does not hold: |
| // (AvB)vC may differ from Av(BvC). Likewise (AvB)^C may differ from |
| // (A^C)v(B^C). An example of the latter is if a location is sent a null func |
| // and an i31, and the location can only contain funcref. If the null func |
| // arrives first, then later we'd merge null func + i31 which ends up as Many, |
| // and then we filter that to funcref and get funcref. But if the i31 arrived |
| // first, we'd filter it into nothing, and then the null func that arrives |
| // later would be the final result. This would not happen if our operations |
| // were precise, but we only make approximations here to avoid unacceptable |
| // overhead, such as cone types but not arbitrary unions, etc. |
| InsertOrderedSet<LocationIndex> workQueue; |
| |
| // All existing links in the graph. We keep this to know when a link we want |
| // to add is new or not. |
| std::unordered_set<IndexLink> links; |
| |
| // Update a location with new contents that are added to everything already |
| // present there. If the update changes the contents at that location (if |
| // there was anything new) then we also need to flow from there, which we will |
| // do by adding the location to the work queue, and eventually flowAfterUpdate |
| // will be called on this location. |
| // |
| // Returns whether it is worth sending new contents to this location in the |
| // future. If we return false, the sending location never needs to do that |
| // ever again. |
| bool updateContents(LocationIndex locationIndex, |
| PossibleContents newContents); |
| |
| // Slow helper that converts a Location to a LocationIndex. This should be |
| // avoided. TODO: remove the remaining uses of this. |
| bool updateContents(const Location& location, |
| const PossibleContents& newContents) { |
| return updateContents(getIndex(location), newContents); |
| } |
| |
| // Flow contents from a location where a change occurred. This sends the new |
| // contents to all the normal targets of this location (using |
| // flowToTargetsAfterUpdate), and also handles special cases of flow after. |
| void flowAfterUpdate(LocationIndex locationIndex); |
| |
| // Internal part of flowAfterUpdate that handles sending new values to the |
| // given location index's normal targets (that is, the ones listed in the |
| // |targets| vector). |
| void flowToTargetsAfterUpdate(LocationIndex locationIndex, |
| const PossibleContents& contents); |
| |
| // Add a new connection while the flow is happening. If the link already |
| // exists it is not added. |
| void connectDuringFlow(Location from, Location to); |
| |
| // Contents sent to certain locations can be filtered in a special way during |
| // the flow, which is handled in these helpers. These may update |
| // |worthSendingMore| which is whether it is worth sending any more content to |
| // this location in the future. |
| void filterExpressionContents(PossibleContents& contents, |
| const ExpressionLocation& exprLoc, |
| bool& worthSendingMore); |
| void filterGlobalContents(PossibleContents& contents, |
| const GlobalLocation& globalLoc); |
| void filterDataContents(PossibleContents& contents, |
| const DataLocation& dataLoc); |
| void filterPackedDataReads(PossibleContents& contents, |
| const ExpressionLocation& exprLoc); |
| |
| // Reads from GC data: a struct.get or array.get. This is given the type of |
| // the read operation, the field that is read on that type, the known contents |
| // in the reference the read receives, and the read instruction itself. We |
| // compute where we need to read from based on the type and the ref contents |
| // and get that data, adding new links in the graph as needed. |
| void readFromData(Type declaredType, |
| Index fieldIndex, |
| const PossibleContents& refContents, |
| Expression* read); |
| |
| // Similar to readFromData, but does a write for a struct.set or array.set. |
| void writeToData(Expression* ref, Expression* value, Index fieldIndex); |
| |
| // We will need subtypes during the flow, so compute them once ahead of time. |
| std::unique_ptr<SubTypes> subTypes; |
| |
| // The depth of children for each type. This is 0 if the type has no |
| // subtypes, 1 if it has subtypes but none of those have subtypes themselves, |
| // and so forth. |
| std::unordered_map<HeapType, Index> maxDepths; |
| |
| // Given a ConeType, return the normalized depth, that is, the canonical depth |
| // given the actual children it has. If this is a full cone, then we can |
| // always pick the actual maximal depth and use that instead of FullDepth==-1. |
| // For a non-full cone, we also reduce the depth as much as possible, so it is |
| // equal to the maximum depth of an existing subtype. |
| Index getNormalizedConeDepth(Type type, Index depth) { |
| return std::min(depth, maxDepths[type.getHeapType()]); |
| } |
| |
| void normalizeConeType(PossibleContents& cone) { |
| assert(cone.isConeType()); |
| auto type = cone.getType(); |
| auto before = cone.getCone().depth; |
| auto normalized = getNormalizedConeDepth(type, before); |
| if (normalized != before) { |
| cone = PossibleContents::coneType(type, normalized); |
| } |
| } |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| // Dump out a location for debug purposes. |
| void dump(Location location); |
| #endif |
| }; |
| |
| Flower::Flower(Module& wasm, const PassOptions& options) |
| : wasm(wasm), options(options) { |
| |
| // If traps never happen, create a TNH oracle. |
| // |
| // Atm this oracle only helps on GC content, so disable it without GC. |
| if (options.trapsNeverHappen && wasm.features.hasGC()) { |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "tnh phase\n"; |
| #endif |
| tnhOracle = std::make_unique<TNHOracle>(wasm, options); |
| } |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "parallel phase\n"; |
| #endif |
| |
| // First, collect information from each function. |
| ModuleUtils::ParallelFunctionAnalysis<CollectedFuncInfo> analysis( |
| wasm, [&](Function* func, CollectedFuncInfo& info) { |
| InfoCollector finder(info); |
| |
| if (func->imported()) { |
| // Imports return unknown values. |
| auto results = func->getResults(); |
| for (Index i = 0; i < results.size(); i++) { |
| finder.addRoot(ResultLocation{func, i}, |
| PossibleContents::fromType(results[i])); |
| } |
| return; |
| } |
| |
| finder.walkFunctionInModule(func, &wasm); |
| }); |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "single phase\n"; |
| #endif |
| |
| // Also walk the global module code (for simplicity, also add it to the |
| // function map, using a "function" key of nullptr). |
| auto& globalInfo = analysis.map[nullptr]; |
| InfoCollector finder(globalInfo); |
| finder.walkModuleCode(&wasm); |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "global init phase\n"; |
| #endif |
| |
| // Connect global init values (which we've just processed, as part of the |
| // module code) to the globals they initialize. |
| for (auto& global : wasm.globals) { |
| if (global->imported()) { |
| // Imports are unknown values. |
| finder.addRoot(GlobalLocation{global->name}, |
| PossibleContents::fromType(global->type)); |
| continue; |
| } |
| auto* init = global->init; |
| if (finder.isRelevant(init->type)) { |
| globalInfo.links.push_back( |
| {ExpressionLocation{init, 0}, GlobalLocation{global->name}}); |
| } |
| } |
| |
| // Merge the function information into a single large graph that represents |
| // the entire program all at once, indexing and deduplicating everything as we |
| // go. |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "merging+indexing phase\n"; |
| #endif |
| |
| // The merged roots. (Note that all other forms of merged data are declared at |
| // the class level, since we need them during the flow, but the roots are only |
| // needed to start the flow, so we can declare them here.) |
| // |
| // This must be insert-ordered for the same reason as |workQueue| is, see |
| // above. |
| InsertOrderedMap<Location, PossibleContents> roots; |
| |
| for (auto& [func, info] : analysis.map) { |
| for (auto& link : info.links) { |
| links.insert(getIndexes(link)); |
| } |
| for (auto& [root, value] : info.roots) { |
| roots[root] = value; |
| |
| // Ensure an index even for a root with no links to it - everything needs |
| // an index. |
| getIndex(root); |
| } |
| for (auto [child, parent] : info.childParents) { |
| // In practice we do not have any childParent connections with a tuple; |
| // assert on that just to be safe. |
| assert(!child->type.isTuple()); |
| childParents[getIndex(ExpressionLocation{child, 0})] = |
| getIndex(ExpressionLocation{parent, 0}); |
| } |
| } |
| |
| // We no longer need the function-level info. |
| analysis.map.clear(); |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "external phase\n"; |
| #endif |
| |
| // Parameters of exported functions are roots, since exports can have callers |
| // that we can't see, so anything might arrive there. |
| auto calledFromOutside = [&](Name funcName) { |
| auto* func = wasm.getFunction(funcName); |
| auto params = func->getParams(); |
| for (Index i = 0; i < func->getParams().size(); i++) { |
| roots[ParamLocation{func, i}] = PossibleContents::fromType(params[i]); |
| } |
| }; |
| |
| for (auto& ex : wasm.exports) { |
| if (ex->kind == ExternalKind::Function) { |
| calledFromOutside(ex->value); |
| } else if (ex->kind == ExternalKind::Table) { |
| // If any table is exported, assume any function in any table (including |
| // other tables) can be called from the outside. |
| // TODO: This could be more precise about which tables are exported and |
| // which are not: perhaps one table is exported but we can optimize |
| // the functions in another table, which is not exported. However, |
| // it is simpler to treat them all the same, and this handles the |
| // common case of no tables being exported at all. |
| // TODO: This does not handle table.get/table.set, or call_ref, for which |
| // we'd need to see which references are used and which escape etc. |
| // For now, assume a closed world for such such advanced use cases / |
| // assume this pass won't be run in them anyhow. |
| // TODO: do this only once if multiple tables are exported |
| for (auto& elementSegment : wasm.elementSegments) { |
| for (auto* curr : elementSegment->data) { |
| if (auto* refFunc = curr->dynCast<RefFunc>()) { |
| calledFromOutside(refFunc->func); |
| } |
| } |
| } |
| } else if (ex->kind == ExternalKind::Global) { |
| // Exported mutable globals are roots, since the outside may write any |
| // value to them. |
| auto name = ex->value; |
| auto* global = wasm.getGlobal(name); |
| if (global->mutable_) { |
| roots[GlobalLocation{name}] = PossibleContents::fromType(global->type); |
| } |
| } |
| } |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "struct phase\n"; |
| #endif |
| |
| subTypes = std::make_unique<SubTypes>(wasm); |
| maxDepths = subTypes->getMaxDepths(); |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "Link-targets phase\n"; |
| #endif |
| |
| // Add all links to the targets vectors of the source locations, which we will |
| // use during the flow. |
| for (auto& link : links) { |
| getTargets(link.from).push_back(link.to); |
| } |
| |
| #ifndef NDEBUG |
| // Each vector of targets (which is a vector for efficiency) must have no |
| // duplicates. |
| for (auto& info : locations) { |
| disallowDuplicates(info.targets); |
| } |
| #endif |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "roots phase\n"; |
| #endif |
| |
| // Set up the roots, which are the starting state for the flow analysis: send |
| // their initial content to them to start the flow. |
| for (const auto& [location, value] : roots) { |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " init root\n"; |
| dump(location); |
| value.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| |
| updateContents(location, value); |
| } |
| |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| std::cout << "flow phase\n"; |
| size_t iters = 0; |
| #endif |
| |
| // Flow the data while there is still stuff flowing. |
| while (!workQueue.empty()) { |
| #ifdef POSSIBLE_CONTENTS_DEBUG |
| iters++; |
| if ((iters & 255) == 0) { |
| std::cout << iters++ << " iters, work left: " << workQueue.size() << '\n'; |
| } |
| #endif |
| |
| auto iter = workQueue.begin(); |
| auto locationIndex = *iter; |
| workQueue.erase(iter); |
| |
| flowAfterUpdate(locationIndex); |
| } |
| |
| // TODO: Add analysis and retrieval logic for fields of immutable globals, |
| // including multiple levels of depth (necessary for itables in j2wasm). |
| } |
| |
| bool Flower::updateContents(LocationIndex locationIndex, |
| PossibleContents newContents) { |
| auto& contents = getContents(locationIndex); |
| auto oldContents = contents; |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << "\nupdateContents\n"; |
| dump(getLocation(locationIndex)); |
| contents.dump(std::cout, &wasm); |
| std::cout << "\n with new contents \n"; |
| newContents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| |
| auto location = getLocation(locationIndex); |
| |
| // Handle special cases: Some locations can only contain certain contents, so |
| // filter accordingly. In principle we need to filter both before and after |
| // combining with existing content; filtering afterwards is obviously |
| // necessary as combining two things will create something larger than both, |
| // and our representation has limitations (e.g. two different ref types will |
| // result in a cone, potentially a very large one). Filtering beforehand is |
| // necessary for the a more subtle reason: consider a location that contains |
| // an i8 which is sent a 0 and then 0x100. If we filter only after, then we'd |
| // combine 0 and 0x100 first and get "unknown integer"; only by filtering |
| // 0x100 to 0 beforehand (since 0x100 & 0xff => 0) will we combine 0 and 0 and |
| // not change anything, which is correct. |
| // |
| // For efficiency reasons we aim to only filter once, depending on the type of |
| // filtering. Most can be filtered a single time afterwards, while for data |
| // locations, where the issue is packed integer fields, it's necessary to do |
| // it before as we've mentioned, and also sufficient (see details in |
| // filterDataContents). |
| if (auto* dataLoc = std::get_if<DataLocation>(&location)) { |
| filterDataContents(newContents, *dataLoc); |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " pre-filtered data contents:\n"; |
| newContents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| } else if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) { |
| if (exprLoc->expr->is<StructGet>() || exprLoc->expr->is<ArrayGet>()) { |
| // Packed data reads must be filtered before the combine() operation, as |
| // we must only combine the filtered contents (e.g. if 0xff arrives which |
| // as a signed read is truly 0xffffffff then we cannot first combine the |
| // existing 0xffffffff with the new 0xff, as they are different, and the |
| // result will no longer be a constant). |
| filterPackedDataReads(newContents, *exprLoc); |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " pre-filtered packed read contents:\n"; |
| newContents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| } |
| } |
| |
| contents.combine(newContents); |
| |
| if (contents.isNone()) { |
| // There is still nothing here. There is nothing more to do here but to |
| // return that it is worth sending more. |
| return true; |
| } |
| |
| // It is not worth sending any more to this location if we are now in the |
| // worst possible case, as no future value could cause any change. |
| bool worthSendingMore = true; |
| if (contents.isConeType()) { |
| if (!contents.getType().isRef()) { |
| // A cone type of a non-reference is the worst case, since subtyping is |
| // not relevant there, and so if we only know something about the type |
| // then we already know nothing beyond what the type in the wasm tells us |
| // (and from there we can only go to Many). |
| worthSendingMore = false; |
| } else { |
| // Normalize all reference cones. There is never a point to flow around |
| // anything non-normalized, which might lead to extra work. For example, |
| // if A has no subtypes, then a full cone for A is really the same as one |
| // with depth 0 (an exact type). And we don't want to see the full cone |
| // arrive and think it was an improvement over the one with depth 0 and do |
| // more flowing based on that. |
| normalizeConeType(contents); |
| } |
| } |
| |
| // Check if anything changed. |
| if (contents == oldContents) { |
| // Nothing actually changed, so just return. |
| return worthSendingMore; |
| } |
| |
| // Handle filtering (see comment earlier, this is the later filtering stage). |
| bool filtered = false; |
| if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) { |
| // TODO: Replace this with specific filterFoo or flowBar methods like we |
| // have for filterGlobalContents. That could save a little wasted work |
| // here. Might be best to do that after the spec is fully stable. |
| filterExpressionContents(contents, *exprLoc, worthSendingMore); |
| filtered = true; |
| } else if (auto* globalLoc = std::get_if<GlobalLocation>(&location)) { |
| filterGlobalContents(contents, *globalLoc); |
| filtered = true; |
| } |
| |
| // Check if anything changed after filtering, if we did so. |
| if (filtered) { |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " filtered contents:\n"; |
| contents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| |
| if (contents == oldContents) { |
| return worthSendingMore; |
| } |
| } |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " updateContents has something new\n"; |
| contents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| |
| // After filtering we should always have more precise information than "many" |
| // - in the worst case, we can have the type declared in the wasm. |
| assert(!contents.isMany()); |
| |
| // Add a work item if there isn't already. |
| workQueue.insert(locationIndex); |
| |
| return worthSendingMore; |
| } |
| |
| void Flower::flowAfterUpdate(LocationIndex locationIndex) { |
| const auto location = getLocation(locationIndex); |
| auto& contents = getContents(locationIndex); |
| |
| // We are called after a change at a location. A change means that some |
| // content has arrived, since we never send empty values around. Assert on |
| // that. |
| assert(!contents.isNone()); |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << "\nflowAfterUpdate to:\n"; |
| dump(location); |
| std::cout << " arriving:\n"; |
| contents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| |
| // Flow the contents to the normal targets of this location. |
| flowToTargetsAfterUpdate(locationIndex, contents); |
| |
| // We are mostly done, except for handling interesting/special cases in the |
| // flow, additional operations that we need to do aside from sending the new |
| // contents to the normal (statically linked) targets. |
| |
| if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) { |
| auto iter = childParents.find(locationIndex); |
| if (iter == childParents.end()) { |
| return; |
| } |
| |
| // This is indeed one of the special cases where it is the child of a |
| // parent, and we need to do some special handling because of that child- |
| // parent connection. |
| [[maybe_unused]] auto* child = exprLoc->expr; |
| auto parentIndex = iter->second; |
| auto* parent = std::get<ExpressionLocation>(getLocation(parentIndex)).expr; |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " special, parent:\n" << *parent << '\n'; |
| #endif |
| |
| if (auto* get = parent->dynCast<StructGet>()) { |
| // |child| is the reference child of a struct.get. |
| assert(get->ref == child); |
| readFromData(get->ref->type, get->index, contents, get); |
| } else if (auto* set = parent->dynCast<StructSet>()) { |
| // |child| is either the reference or the value child of a struct.set. |
| assert(set->ref == child || set->value == child); |
| writeToData(set->ref, set->value, set->index); |
| } else if (auto* get = parent->dynCast<ArrayGet>()) { |
| assert(get->ref == child); |
| readFromData(get->ref->type, 0, contents, get); |
| } else if (auto* set = parent->dynCast<ArraySet>()) { |
| assert(set->ref == child || set->value == child); |
| writeToData(set->ref, set->value, 0); |
| } else { |
| // TODO: ref.test and all other casts can be optimized (see the cast |
| // helper code used in OptimizeInstructions and RemoveUnusedBrs) |
| WASM_UNREACHABLE("bad childParents content"); |
| } |
| } |
| } |
| |
| void Flower::flowToTargetsAfterUpdate(LocationIndex locationIndex, |
| const PossibleContents& contents) { |
| // Send the new contents to all the targets of this location. As we do so, |
| // prune any targets that we do not need to bother sending content to in the |
| // future, to save space and work later. |
| auto& targets = getTargets(locationIndex); |
| targets.erase(std::remove_if(targets.begin(), |
| targets.end(), |
| [&](LocationIndex targetIndex) { |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " send to target\n"; |
| dump(getLocation(targetIndex)); |
| #endif |
| return !updateContents(targetIndex, contents); |
| }), |
| targets.end()); |
| |
| if (contents.isMany()) { |
| // We contain Many, and just called updateContents on our targets to send |
| // that value to them. We'll never need to send anything from here ever |
| // again, since we sent the worst case possible already, so we can just |
| // clear our targets vector. But we should have already removed all the |
| // targets in the above remove_if operation, since they should have all |
| // notified us that we do not need to send them any more updates. |
| assert(targets.empty()); |
| } |
| } |
| |
| void Flower::connectDuringFlow(Location from, Location to) { |
| auto newLink = LocationLink{from, to}; |
| auto newIndexLink = getIndexes(newLink); |
| if (links.count(newIndexLink) == 0) { |
| // This is a new link. Add it to the known links. |
| links.insert(newIndexLink); |
| |
| // Add it to the |targets| vector. |
| auto& targets = getTargets(newIndexLink.from); |
| targets.push_back(newIndexLink.to); |
| #ifndef NDEBUG |
| disallowDuplicates(targets); |
| #endif |
| |
| // In addition to adding the link, which will ensure new contents appearing |
| // later will be sent along, we also update with the current contents. |
| updateContents(to, getContents(getIndex(from))); |
| } |
| } |
| |
| void Flower::filterExpressionContents(PossibleContents& contents, |
| const ExpressionLocation& exprLoc, |
| bool& worthSendingMore) { |
| auto type = exprLoc.expr->type; |
| |
| if (type.isTuple()) { |
| // TODO: Optimize tuples here as well. We would need to take into account |
| // exprLoc.tupleIndex for that in all the below. |
| return; |
| } |
| |
| // The caller cannot know of a situation where it might not be worth sending |
| // more to a reference - all that logic is in here. That is, the rest of this |
| // function is the only place we can mark |worthSendingMore| as false for a |
| // reference. |
| bool isRef = type.isRef(); |
| assert(!isRef || worthSendingMore); |
| |
| // The TNH oracle informs us of the maximal contents possible here. |
| auto maximalContents = getTNHContents(exprLoc.expr); |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << "TNHOracle informs us that " << *exprLoc.expr << " contains " |
| << maximalContents << "\n"; |
| #endif |
| contents.intersect(maximalContents); |
| if (contents.isNone()) { |
| // Nothing was left here at all. |
| return; |
| } |
| |
| // For references we need to normalize the intersection, see below. For non- |
| // references, we are done (we did all the relevant work in the intersect() |
| // call). |
| if (!isRef) { |
| return; |
| } |
| |
| // Normalize the intersection. We want to check later if any more content can |
| // arrive here, and also we want to avoid flowing around anything non- |
| // normalized, as explained earlier. |
| // |
| // Note that this normalization is necessary even though |contents| was |
| // normalized before the intersection, e.g.: |
| /* |
| // A |
| // / \ |
| // B C |
| // | |
| // D |
| */ |
| // Consider the case where |maximalContents| is Cone(B, Infinity) and the |
| // original |contents| was Cone(A, 2) (which is normalized). The naive |
| // intersection is Cone(B, 1), since the core intersection logic makes no |
| // assumptions about the rest of the types. That is then normalized to |
| // Cone(B, 0) since there happens to be no subtypes for B. |
| // |
| // Note that the intersection may also not be a cone type, if it is a global |
| // or literal. In that case we don't have anything more to do here. |
| if (!contents.isConeType()) { |
| return; |
| } |
| |
| normalizeConeType(contents); |
| |
| // There is a chance that the intersection is equal to the maximal contents, |
| // which would mean nothing more can arrive here. |
| normalizeConeType(maximalContents); |
| |
| if (contents == maximalContents) { |
| // We already contain everything possible, so this is the worst case. |
| worthSendingMore = false; |
| } |
| } |
| |
| void Flower::filterGlobalContents(PossibleContents& contents, |
| const GlobalLocation& globalLoc) { |
| auto* global = wasm.getGlobal(globalLoc.name); |
| if (global->mutable_ == Immutable) { |
| // This is an immutable global. We never need to consider this value as |
| // "Many", since in the worst case we can just use the immutable value. That |
| // is, we can always replace this value with (global.get $name) which will |
| // get the right value. Likewise, using the immutable global value is often |
| // better than a cone type (even an exact one), but TODO: we could note both |
| // a cone/exact type *and* that something is equal to a global, in some |
| // cases. See https://github.com/WebAssembly/binaryen/pull/5083 |
| if (contents.isMany() || contents.isConeType()) { |
| contents = PossibleContents::global(global->name, global->type); |
| |
| // TODO: We could do better here, to set global->init->type instead of |
| // global->type, or even the contents.getType() - either of those |
| // may be more refined. But other passes will handle that in |
| // general (by refining the global's type). |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " setting immglobal to ImmutableGlobal\n"; |
| contents.dump(std::cout, &wasm); |
| std::cout << '\n'; |
| #endif |
| } |
| } |
| } |
| |
| void Flower::filterDataContents(PossibleContents& contents, |
| const DataLocation& dataLoc) { |
| auto field = GCTypeUtils::getField(dataLoc.type, dataLoc.index); |
| if (!field) { |
| // This is a bottom type; nothing will be written here. |
| assert(dataLoc.type.isBottom()); |
| contents = PossibleContents::none(); |
| return; |
| } |
| |
| if (field->isPacked()) { |
| // We must handle packed fields carefully. |
| if (contents.isLiteral()) { |
| // This is a constant. We can truncate it and use that value. |
| auto mask = Literal(int32_t(Bits::lowBitMask(field->getByteSize() * 8))); |
| contents = PossibleContents::literal(contents.getLiteral().and_(mask)); |
| } else { |
| // This is not a constant. We can't even handle a global here, as we'd |
| // need to track that this global's value must be truncated before it is |
| // used, and we don't do that atm. Leave only the type. |
| // TODO Consider tracking packing on GlobalInfo alongside the type. |
| // Another option is to make GUFA.cpp apply packing on the read, |
| // like CFP does - but that can only be done when replacing a |
| // StructGet of a packed field, and not anywhere else we saw that |
| // value reach. |
| contents = PossibleContents::fromType(contents.getType()); |
| } |
| // Given that the above only (1) turns an i32 into a masked i32 or (2) turns |
| // anything else into an unknown i32, this is safe to run as pre-filtering, |
| // that is, before we combine contents, since |
| // |
| // (a) two constants are ok as masking is distributive, |
| // (x & M) U (y & M) == (x U y) & M |
| // (b) if one is a constant and the other is not then |
| // (x & M) U ? == ? == (x U ?) == (x U ?) & M |
| // (where ? is an unknown i32) |
| // (c) and if both are not constants then likewise we always end up as an |
| // unknown i32 |
| // |
| } |
| } |
| |
| void Flower::filterPackedDataReads(PossibleContents& contents, |
| const ExpressionLocation& exprLoc) { |
| auto* expr = exprLoc.expr; |
| |
| // Packed fields are stored as the truncated bits (see comment on |
| // DataLocation; the actual truncation is done in filterDataContents), which |
| // means that unsigned gets just work but signed ones need fixing (and we only |
| // know how to do that here, when we reach the get and see if it is signed). |
| auto signed_ = false; |
| Expression* ref; |
| Index index; |
| if (auto* get = expr->dynCast<StructGet>()) { |
| signed_ = get->signed_; |
| ref = get->ref; |
| index = get->index; |
| } else if (auto* get = expr->dynCast<ArrayGet>()) { |
| signed_ = get->signed_; |
| ref = get->ref; |
| // Arrays are treated as having a single field. |
| index = 0; |
| } else { |
| WASM_UNREACHABLE("bad packed read"); |
| } |
| if (!signed_) { |
| return; |
| } |
| |
| // We are reading data here, so the reference must be a valid struct or |
| // array, otherwise we would never have gotten here. |
| assert(ref->type.isRef()); |
| auto field = GCTypeUtils::getField(ref->type.getHeapType(), index); |
| assert(field); |
| if (!field->isPacked()) { |
| return; |
| } |
| |
| if (contents.isLiteral()) { |
| // This is a constant. We can sign-extend it and use that value. |
| auto shifts = Literal(int32_t(32 - field->getByteSize() * 8)); |
| auto lit = contents.getLiteral(); |
| lit = lit.shl(shifts); |
| lit = lit.shrS(shifts); |
| contents = PossibleContents::literal(lit); |
| } else { |
| // This is not a constant. As in filterDataContents, give up and leave |
| // only the type, since we have no way to track the sign-extension on |
| // top of whatever this is. |
| contents = PossibleContents::fromType(contents.getType()); |
| } |
| } |
| |
| void Flower::readFromData(Type declaredType, |
| Index fieldIndex, |
| const PossibleContents& refContents, |
| Expression* read) { |
| #ifndef NDEBUG |
| // We must not have anything in the reference that is invalid for the wasm |
| // type there. |
| auto maximalContents = PossibleContents::fullConeType(declaredType); |
| assert(PossibleContents::isSubContents(refContents, maximalContents)); |
| #endif |
| |
| // The data that a struct.get reads depends on two things: the reference that |
| // we read from, and the relevant DataLocations. The reference determines |
| // which DataLocations are relevant: if it is an exact type then we have a |
| // single DataLocation to read from, the one type that can be read from there. |
| // Otherwise, we might read from any subtype, and so all their DataLocations |
| // are relevant. |
| // |
| // What can be confusing is that the information about the reference is also |
| // inferred during the flow. That is, we use our current information about the |
| // reference to decide what to do here. But the flow is not finished yet! |
| // To keep things valid, we must therefore react to changes in either the |
| // reference - when we see that more types might be read from here - or the |
| // DataLocations - when new things are written to the data we can read from. |
| // Specifically, at every point in time we want to preserve the property that |
| // we've read from all relevant types based on the current reference, and |
| // we've read the very latest possible contents from those types. And then |
| // since we preserve that property til the end of the flow, it is also valid |
| // then. At the end of the flow, the current reference's contents are the |
| // final and correct contents for that location, which means we've ended up |
| // with the proper result: the struct.get reads everything it should. |
| // |
| // To implement what was just described, we call this function when the |
| // reference is updated. This function will then set up connections in the |
| // graph so that updates to the relevant DataLocations will reach us in the |
| // future. |
| |
| if (refContents.isNull() || refContents.isNone()) { |
| // Nothing is read here as this is either a null or unreachable code. (Note |
| // that the contents must be a subtype of the wasm type, which rules out |
| // other possibilities like a non-null literal such as an integer or a |
| // function reference.) |
| return; |
| } |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " add special reads\n"; |
| #endif |
| |
| // The only possibilities left are a cone type (the worst case is where the |
| // cone matches the wasm type), or a global. |
| // |
| // TODO: The Global case may have a different cone type than the heapType, |
| // which we could use here. |
| // TODO: A Global may refer to an immutable global, which we can read the |
| // field from potentially (reading it from the struct.new/array.new |
| // in the definition of it, if it is not imported; or, we could track |
| // the contents of immutable fields of allocated objects, and not just |
| // represent them as an exact type). |
| // See the test TODO with text "We optimize some of this, but stop at |
| // reading from the immutable global" |
| assert(refContents.isGlobal() || refContents.isConeType()); |
| |
| // Just look at the cone here, discarding information about this being a |
| // global, if it was one. All that matters from now is the cone. We also |
| // normalize the cone to avoid wasted work later. |
| auto cone = refContents.getCone(); |
| auto normalizedDepth = getNormalizedConeDepth(cone.type, cone.depth); |
| |
| // We create a ConeReadLocation for the canonical cone of this type, to |
| // avoid bloating the graph, see comment on ConeReadLocation(). |
| auto coneReadLocation = |
| ConeReadLocation{cone.type.getHeapType(), normalizedDepth, fieldIndex}; |
| if (!hasIndex(coneReadLocation)) { |
| // This is the first time we use this location, so create the links for it |
| // in the graph. |
| subTypes->iterSubTypes( |
| cone.type.getHeapType(), |
| normalizedDepth, |
| [&](HeapType type, Index depth) { |
| connectDuringFlow(DataLocation{type, fieldIndex}, coneReadLocation); |
| }); |
| |
| // TODO: we can end up with redundant links here if we see one cone first |
| // and then a larger one later. But removing links is not efficient, |
| // so for now just leave that. |
| } |
| |
| // Link to the canonical location. |
| connectDuringFlow(coneReadLocation, ExpressionLocation{read, 0}); |
| } |
| |
| void Flower::writeToData(Expression* ref, Expression* value, Index fieldIndex) { |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| std::cout << " add special writes\n"; |
| #endif |
| |
| auto refContents = getContents(getIndex(ExpressionLocation{ref, 0})); |
| |
| #ifndef NDEBUG |
| // We must not have anything in the reference that is invalid for the wasm |
| // type there. |
| auto maximalContents = PossibleContents::fullConeType(ref->type); |
| assert(PossibleContents::isSubContents(refContents, maximalContents)); |
| #endif |
| |
| // We could set up links here as we do for reads, but as we get to this code |
| // in any case, we can just flow the values forward directly. This avoids |
| // adding any links (edges) to the graph (and edges are what we want to avoid |
| // adding, as there can be a quadratic number of them). In other words, we'll |
| // loop over the places we need to send info to, which we can figure out in a |
| // simple way, and by doing so we avoid materializing edges into the graph. |
| // |
| // Note that this is different from readFromData, above, which does add edges |
| // to the graph (and works hard to add as few as possible, see the "canonical |
| // cone reads" logic). The difference is because readFromData must "subscribe" |
| // to get notifications from the relevant DataLocations. But when writing that |
| // is not a problem: whenever a change happens in the reference or the value |
| // of a struct.set then this function will get called, and those are the only |
| // things we care about. And we can then just compute the values we are |
| // sending (based on the current contents of the reference and the value), and |
| // where we should send them to, and do that right here. (And as commented in |
| // readFromData, that is guaranteed to give us the right result in the end: at |
| // every point in time we send the right data, so when the flow is finished |
| // we've sent information based on the final and correct information about our |
| // reference and value.) |
| |
| auto valueContents = getContents(getIndex(ExpressionLocation{value, 0})); |
| |
| // See the related comment in readFromData() as to why these are the only |
| // things we need to check, and why the assertion afterwards contains the only |
| // things possible. |
| if (refContents.isNone() || refContents.isNull()) { |
| return; |
| } |
| assert(refContents.isGlobal() || refContents.isConeType()); |
| |
| // As in readFromData, normalize to the proper cone. |
| auto cone = refContents.getCone(); |
| auto normalizedDepth = getNormalizedConeDepth(cone.type, cone.depth); |
| |
| subTypes->iterSubTypes( |
| cone.type.getHeapType(), normalizedDepth, [&](HeapType type, Index depth) { |
| auto heapLoc = DataLocation{type, fieldIndex}; |
| updateContents(heapLoc, valueContents); |
| }); |
| } |
| |
| #if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2 |
| void Flower::dump(Location location) { |
| if (auto* loc = std::get_if<ExpressionLocation>(&location)) { |
| std::cout << " exprloc \n" |
| << *loc->expr << " : " << loc->tupleIndex << '\n'; |
| } else if (auto* loc = std::get_if<DataLocation>(&location)) { |
| std::cout << " dataloc "; |
| if (wasm.typeNames.count(loc->type)) { |
| std::cout << '$' << wasm.typeNames[loc->type].name; |
| } else { |
| std::cout << loc->type << '\n'; |
| } |
| std::cout << " : " << loc->index << '\n'; |
| } else if (auto* loc = std::get_if<TagLocation>(&location)) { |
| std::cout << " tagloc " << loc->tag << " : " << loc->tupleIndex << '\n'; |
| } else if (auto* loc = std::get_if<ParamLocation>(&location)) { |
| std::cout << " paramloc " << loc->func->name << " : " << loc->index |
| << '\n'; |
| } else if (auto* loc = std::get_if<LocalLocation>(&location)) { |
| std::cout << " localloc " << loc->func->name << " : " << loc->index |
| << '\n'; |
| } else if (auto* loc = std::get_if<ResultLocation>(&location)) { |
| std::cout << " resultloc $" << loc->func->name << " : " << loc->index |
| << '\n'; |
| } else if (auto* loc = std::get_if<GlobalLocation>(&location)) { |
| std::cout << " globalloc " << loc->name << '\n'; |
| } else if (std::get_if<SignatureParamLocation>(&location)) { |
| std::cout << " sigparamloc " << '\n'; |
| } else if (std::get_if<SignatureResultLocation>(&location)) { |
| std::cout << " sigresultloc " << '\n'; |
| } else if (auto* loc = std::get_if<NullLocation>(&location)) { |
| std::cout << " Nullloc " << loc->type << '\n'; |
| } else { |
| std::cout << " (other)\n"; |
| } |
| } |
| #endif |
| |
| } // anonymous namespace |
| |
| void ContentOracle::analyze() { |
| Flower flower(wasm, options); |
| for (LocationIndex i = 0; i < flower.locations.size(); i++) { |
| locationContents[flower.getLocation(i)] = flower.getContents(i); |
| } |
| } |
| |
| } // namespace wasm |