| /* |
| ** 2015-08-18, 2023-04-28 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This file demonstrates how to create a table-valued-function using |
| ** a virtual table. This demo implements the generate_series() function |
| ** which gives the same results as the eponymous function in PostgreSQL, |
| ** within the limitation that its arguments are signed 64-bit integers. |
| ** |
| ** Considering its equivalents to generate_series(start,stop,step): A |
| ** value V[n] sequence is produced for integer n ascending from 0 where |
| ** ( V[n] == start + n * step && sgn(V[n] - stop) * sgn(step) >= 0 ) |
| ** for each produced value (independent of production time ordering.) |
| ** |
| ** All parameters must be either integer or convertable to integer. |
| ** The start parameter is required. |
| ** The stop parameter defaults to (1<<32)-1 (aka 4294967295 or 0xffffffff) |
| ** The step parameter defaults to 1 and 0 is treated as 1. |
| ** |
| ** Examples: |
| ** |
| ** SELECT * FROM generate_series(0,100,5); |
| ** |
| ** The query above returns integers from 0 through 100 counting by steps |
| ** of 5. In other words, 0, 5, 10, 15, ..., 90, 95, 100. There are a total |
| ** of 21 rows. |
| ** |
| ** SELECT * FROM generate_series(0,100); |
| ** |
| ** Integers from 0 through 100 with a step size of 1. 101 rows. |
| ** |
| ** SELECT * FROM generate_series(20) LIMIT 10; |
| ** |
| ** Integers 20 through 29. 10 rows. |
| ** |
| ** SELECT * FROM generate_series(0,-100,-5); |
| ** |
| ** Integers 0 -5 -10 ... -100. 21 rows. |
| ** |
| ** SELECT * FROM generate_series(0,-1); |
| ** |
| ** Empty sequence. |
| ** |
| ** HOW IT WORKS |
| ** |
| ** The generate_series "function" is really a virtual table with the |
| ** following schema: |
| ** |
| ** CREATE TABLE generate_series( |
| ** value, |
| ** start HIDDEN, |
| ** stop HIDDEN, |
| ** step HIDDEN |
| ** ); |
| ** |
| ** The virtual table also has a rowid which is an alias for the value. |
| ** |
| ** Function arguments in queries against this virtual table are translated |
| ** into equality constraints against successive hidden columns. In other |
| ** words, the following pairs of queries are equivalent to each other: |
| ** |
| ** SELECT * FROM generate_series(0,100,5); |
| ** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5; |
| ** |
| ** SELECT * FROM generate_series(0,100); |
| ** SELECT * FROM generate_series WHERE start=0 AND stop=100; |
| ** |
| ** SELECT * FROM generate_series(20) LIMIT 10; |
| ** SELECT * FROM generate_series WHERE start=20 LIMIT 10; |
| ** |
| ** The generate_series virtual table implementation leaves the xCreate method |
| ** set to NULL. This means that it is not possible to do a CREATE VIRTUAL |
| ** TABLE command with "generate_series" as the USING argument. Instead, there |
| ** is a single generate_series virtual table that is always available without |
| ** having to be created first. |
| ** |
| ** The xBestIndex method looks for equality constraints against the hidden |
| ** start, stop, and step columns, and if present, it uses those constraints |
| ** to bound the sequence of generated values. If the equality constraints |
| ** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step. |
| ** xBestIndex returns a small cost when both start and stop are available, |
| ** and a very large cost if either start or stop are unavailable. This |
| ** encourages the query planner to order joins such that the bounds of the |
| ** series are well-defined. |
| ** |
| ** Update on 2024-08-22: |
| ** xBestIndex now also looks for equality and inequality constraints against |
| ** the value column and uses those constraints as additional bounds against |
| ** the sequence range. Thus, a query like this: |
| ** |
| ** SELECT value FROM generate_series($SA,$EA) |
| ** WHERE value BETWEEN $SB AND $EB; |
| ** |
| ** Is logically the same as: |
| ** |
| ** SELECT value FROM generate_series(max($SA,$SB),min($EA,$EB)); |
| ** |
| ** Constraints on the value column can server as substitutes for constraints |
| ** on the hidden start and stop columns. So, the following two queries |
| ** are equivalent: |
| ** |
| ** SELECT value FROM generate_series($S,$E); |
| ** SELECT value FROM generate_series WHERE value BETWEEN $S and $E; |
| ** |
| */ |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #include <assert.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <math.h> |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| |
| /* series_cursor is a subclass of sqlite3_vtab_cursor which will |
| ** serve as the underlying representation of a cursor that scans |
| ** over rows of the result. |
| ** |
| ** iOBase, iOTerm, and iOStep are the original values of the |
| ** start=, stop=, and step= constraints on the query. These are |
| ** the values reported by the start, stop, and step columns of the |
| ** virtual table. |
| ** |
| ** iBase, iTerm, iStep, and bDescp are the actual values used to generate |
| ** the sequence. These might be different from the iOxxxx values. |
| ** For example in |
| ** |
| ** SELECT value FROM generate_series(1,11,2) |
| ** WHERE value BETWEEN 4 AND 8; |
| ** |
| ** The iOBase is 1, but the iBase is 5. iOTerm is 11 but iTerm is 7. |
| ** Another example: |
| ** |
| ** SELECT value FROM generate_series(1,15,3) ORDER BY value DESC; |
| ** |
| ** The cursor initialization for the above query is: |
| ** |
| ** iOBase = 1 iBase = 13 |
| ** iOTerm = 15 iTerm = 1 |
| ** iOStep = 3 iStep = 3 bDesc = 1 |
| ** |
| ** The actual step size is unsigned so that can have a value of |
| ** +9223372036854775808 which is needed for querys like this: |
| ** |
| ** SELECT value |
| ** FROM generate_series(9223372036854775807, |
| ** -9223372036854775808, |
| ** -9223372036854775808) |
| ** ORDER BY value ASC; |
| ** |
| ** The setup for the previous query will be: |
| ** |
| ** iOBase = 9223372036854775807 iBase = -1 |
| ** iOTerm = -9223372036854775808 iTerm = 9223372036854775807 |
| ** iOStep = -9223372036854775808 iStep = 9223372036854775808 bDesc = 0 |
| */ |
| typedef unsigned char u8; |
| typedef struct series_cursor series_cursor; |
| struct series_cursor { |
| sqlite3_vtab_cursor base; /* Base class - must be first */ |
| sqlite3_int64 iOBase; /* Original starting value ("start") */ |
| sqlite3_int64 iOTerm; /* Original terminal value ("stop") */ |
| sqlite3_int64 iOStep; /* Original step value */ |
| sqlite3_int64 iBase; /* Starting value to actually use */ |
| sqlite3_int64 iTerm; /* Terminal value to actually use */ |
| sqlite3_uint64 iStep; /* The step size */ |
| sqlite3_int64 iValue; /* Current value */ |
| u8 bDesc; /* iStep is really negative */ |
| u8 bDone; /* True if stepped past last element */ |
| }; |
| |
| /* |
| ** Computed the difference between two 64-bit signed integers using a |
| ** convoluted computation designed to work around the silly restriction |
| ** against signed integer overflow in C. |
| */ |
| static sqlite3_uint64 span64(sqlite3_int64 a, sqlite3_int64 b){ |
| assert( a>=b ); |
| return (*(sqlite3_uint64*)&a) - (*(sqlite3_uint64*)&b); |
| } |
| |
| /* |
| ** Add or substract an unsigned 64-bit integer from a signed 64-bit integer |
| ** and return the new signed 64-bit integer. |
| */ |
| static sqlite3_int64 add64(sqlite3_int64 a, sqlite3_uint64 b){ |
| sqlite3_uint64 x = *(sqlite3_uint64*)&a; |
| x += b; |
| return *(sqlite3_int64*)&x; |
| } |
| static sqlite3_int64 sub64(sqlite3_int64 a, sqlite3_uint64 b){ |
| sqlite3_uint64 x = *(sqlite3_uint64*)&a; |
| x -= b; |
| return *(sqlite3_int64*)&x; |
| } |
| |
| /* |
| ** The seriesConnect() method is invoked to create a new |
| ** series_vtab that describes the generate_series virtual table. |
| ** |
| ** Think of this routine as the constructor for series_vtab objects. |
| ** |
| ** All this routine needs to do is: |
| ** |
| ** (1) Allocate the series_vtab object and initialize all fields. |
| ** |
| ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the |
| ** result set of queries against generate_series will look like. |
| */ |
| static int seriesConnect( |
| sqlite3 *db, |
| void *pUnused, |
| int argcUnused, const char *const*argvUnused, |
| sqlite3_vtab **ppVtab, |
| char **pzErrUnused |
| ){ |
| sqlite3_vtab *pNew; |
| int rc; |
| |
| /* Column numbers */ |
| #define SERIES_COLUMN_ROWID (-1) |
| #define SERIES_COLUMN_VALUE 0 |
| #define SERIES_COLUMN_START 1 |
| #define SERIES_COLUMN_STOP 2 |
| #define SERIES_COLUMN_STEP 3 |
| |
| (void)pUnused; |
| (void)argcUnused; |
| (void)argvUnused; |
| (void)pzErrUnused; |
| rc = sqlite3_declare_vtab(db, |
| "CREATE TABLE x(value,start hidden,stop hidden,step hidden)"); |
| if( rc==SQLITE_OK ){ |
| pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); |
| if( pNew==0 ) return SQLITE_NOMEM; |
| memset(pNew, 0, sizeof(*pNew)); |
| sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This method is the destructor for series_cursor objects. |
| */ |
| static int seriesDisconnect(sqlite3_vtab *pVtab){ |
| sqlite3_free(pVtab); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Constructor for a new series_cursor object. |
| */ |
| static int seriesOpen(sqlite3_vtab *pUnused, sqlite3_vtab_cursor **ppCursor){ |
| series_cursor *pCur; |
| (void)pUnused; |
| pCur = sqlite3_malloc( sizeof(*pCur) ); |
| if( pCur==0 ) return SQLITE_NOMEM; |
| memset(pCur, 0, sizeof(*pCur)); |
| *ppCursor = &pCur->base; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Destructor for a series_cursor. |
| */ |
| static int seriesClose(sqlite3_vtab_cursor *cur){ |
| sqlite3_free(cur); |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Advance a series_cursor to its next row of output. |
| */ |
| static int seriesNext(sqlite3_vtab_cursor *cur){ |
| series_cursor *pCur = (series_cursor*)cur; |
| if( pCur->iValue==pCur->iTerm ){ |
| pCur->bDone = 1; |
| }else if( pCur->bDesc ){ |
| pCur->iValue = sub64(pCur->iValue, pCur->iStep); |
| assert( pCur->iValue>=pCur->iTerm ); |
| }else{ |
| pCur->iValue = add64(pCur->iValue, pCur->iStep); |
| assert( pCur->iValue<=pCur->iTerm ); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return values of columns for the row at which the series_cursor |
| ** is currently pointing. |
| */ |
| static int seriesColumn( |
| sqlite3_vtab_cursor *cur, /* The cursor */ |
| sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ |
| int i /* Which column to return */ |
| ){ |
| series_cursor *pCur = (series_cursor*)cur; |
| sqlite3_int64 x = 0; |
| switch( i ){ |
| case SERIES_COLUMN_START: x = pCur->iOBase; break; |
| case SERIES_COLUMN_STOP: x = pCur->iOTerm; break; |
| case SERIES_COLUMN_STEP: x = pCur->iOStep; break; |
| default: x = pCur->iValue; break; |
| } |
| sqlite3_result_int64(ctx, x); |
| return SQLITE_OK; |
| } |
| |
| #ifndef LARGEST_UINT64 |
| #define LARGEST_INT64 ((sqlite3_int64)0x7fffffffffffffffLL) |
| #define LARGEST_UINT64 ((sqlite3_uint64)0xffffffffffffffffULL) |
| #define SMALLEST_INT64 ((sqlite3_int64)0x8000000000000000LL) |
| #endif |
| |
| /* |
| ** The rowid is the same as the value. |
| */ |
| static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| series_cursor *pCur = (series_cursor*)cur; |
| *pRowid = pCur->iValue; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return TRUE if the cursor has been moved off of the last |
| ** row of output. |
| */ |
| static int seriesEof(sqlite3_vtab_cursor *cur){ |
| series_cursor *pCur = (series_cursor*)cur; |
| return pCur->bDone; |
| } |
| |
| /* True to cause run-time checking of the start=, stop=, and/or step= |
| ** parameters. The only reason to do this is for testing the |
| ** constraint checking logic for virtual tables in the SQLite core. |
| */ |
| #ifndef SQLITE_SERIES_CONSTRAINT_VERIFY |
| # define SQLITE_SERIES_CONSTRAINT_VERIFY 0 |
| #endif |
| |
| /* |
| ** Return the number of steps between pCur->iBase and pCur->iTerm if |
| ** the step width is pCur->iStep. |
| */ |
| static sqlite3_uint64 seriesSteps(series_cursor *pCur){ |
| if( pCur->bDesc ){ |
| assert( pCur->iBase >= pCur->iTerm ); |
| return span64(pCur->iBase, pCur->iTerm)/pCur->iStep; |
| }else{ |
| assert( pCur->iBase <= pCur->iTerm ); |
| return span64(pCur->iTerm, pCur->iBase)/pCur->iStep; |
| } |
| } |
| |
| #if defined(SQLITE_ENABLE_MATH_FUNCTIONS) || defined(_WIN32) |
| /* |
| ** Case 1 (the most common case): |
| ** The standard math library is available so use ceil() and floor() from there. |
| */ |
| static double seriesCeil(double r){ return ceil(r); } |
| static double seriesFloor(double r){ return floor(r); } |
| #elif defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) |
| /* |
| ** Case 2 (2nd most common): Use GCC/Clang builtins |
| */ |
| static double seriesCeil(double r){ return __builtin_ceil(r); } |
| static double seriesFloor(double r){ return __builtin_floor(r); } |
| #else |
| /* |
| ** Case 3 (rarely happens): Use home-grown ceil() and floor() routines. |
| */ |
| static double seriesCeil(double r){ |
| sqlite3_int64 x; |
| if( r!=r ) return r; |
| if( r<=(-4503599627370496.0) ) return r; |
| if( r>=(+4503599627370496.0) ) return r; |
| x = (sqlite3_int64)r; |
| if( r==(double)x ) return r; |
| if( r>(double)x ) x++; |
| return (double)x; |
| } |
| static double seriesFloor(double r){ |
| sqlite3_int64 x; |
| if( r!=r ) return r; |
| if( r<=(-4503599627370496.0) ) return r; |
| if( r>=(+4503599627370496.0) ) return r; |
| x = (sqlite3_int64)r; |
| if( r==(double)x ) return r; |
| if( r<(double)x ) x--; |
| return (double)x; |
| } |
| #endif |
| |
| /* |
| ** This method is called to "rewind" the series_cursor object back |
| ** to the first row of output. This method is always called at least |
| ** once prior to any call to seriesColumn() or seriesRowid() or |
| ** seriesEof(). |
| ** |
| ** The query plan selected by seriesBestIndex is passed in the idxNum |
| ** parameter. (idxStr is not used in this implementation.) idxNum |
| ** is a bitmask showing which constraints are available: |
| ** |
| ** 0x0001: start=VALUE |
| ** 0x0002: stop=VALUE |
| ** 0x0004: step=VALUE |
| ** 0x0008: descending order |
| ** 0x0010: ascending order |
| ** 0x0020: LIMIT VALUE |
| ** 0x0040: OFFSET VALUE |
| ** 0x0080: value=VALUE |
| ** 0x0100: value>=VALUE |
| ** 0x0200: value>VALUE |
| ** 0x1000: value<=VALUE |
| ** 0x2000: value<VALUE |
| ** |
| ** This routine should initialize the cursor and position it so that it |
| ** is pointing at the first row, or pointing off the end of the table |
| ** (so that seriesEof() will return true) if the table is empty. |
| */ |
| static int seriesFilter( |
| sqlite3_vtab_cursor *pVtabCursor, |
| int idxNum, const char *idxStrUnused, |
| int argc, sqlite3_value **argv |
| ){ |
| series_cursor *pCur = (series_cursor *)pVtabCursor; |
| int iArg = 0; /* Arguments used so far */ |
| int i; /* Loop counter */ |
| sqlite3_int64 iMin = SMALLEST_INT64; /* Smallest allowed output value */ |
| sqlite3_int64 iMax = LARGEST_INT64; /* Largest allowed output value */ |
| sqlite3_int64 iLimit = 0; /* if >0, the value of the LIMIT */ |
| sqlite3_int64 iOffset = 0; /* if >0, the value of the OFFSET */ |
| |
| (void)idxStrUnused; |
| |
| /* If any constraints have a NULL value, then return no rows. |
| ** See ticket https://sqlite.org/src/info/fac496b61722daf2 |
| */ |
| for(i=0; i<argc; i++){ |
| if( sqlite3_value_type(argv[i])==SQLITE_NULL ){ |
| goto series_no_rows; |
| } |
| } |
| |
| /* Capture the three HIDDEN parameters to the virtual table and insert |
| ** default values for any parameters that are omitted. |
| */ |
| if( idxNum & 0x01 ){ |
| pCur->iOBase = sqlite3_value_int64(argv[iArg++]); |
| }else{ |
| pCur->iOBase = 0; |
| } |
| if( idxNum & 0x02 ){ |
| pCur->iOTerm = sqlite3_value_int64(argv[iArg++]); |
| }else{ |
| pCur->iOTerm = 0xffffffff; |
| } |
| if( idxNum & 0x04 ){ |
| pCur->iOStep = sqlite3_value_int64(argv[iArg++]); |
| if( pCur->iOStep==0 ) pCur->iOStep = 1; |
| }else{ |
| pCur->iOStep = 1; |
| } |
| |
| /* If there are constraints on the value column but there are |
| ** no constraints on the start, stop, and step columns, then |
| ** initialize the default range to be the entire range of 64-bit signed |
| ** integers. This range will contracted by the value column constraints |
| ** further below. |
| */ |
| if( (idxNum & 0x05)==0 && (idxNum & 0x0380)!=0 ){ |
| pCur->iOBase = SMALLEST_INT64; |
| } |
| if( (idxNum & 0x06)==0 && (idxNum & 0x3080)!=0 ){ |
| pCur->iOTerm = LARGEST_INT64; |
| } |
| pCur->iBase = pCur->iOBase; |
| pCur->iTerm = pCur->iOTerm; |
| if( pCur->iOStep>0 ){ |
| pCur->iStep = pCur->iOStep; |
| }else if( pCur->iOStep>SMALLEST_INT64 ){ |
| pCur->iStep = -pCur->iOStep; |
| }else{ |
| pCur->iStep = LARGEST_INT64; |
| pCur->iStep++; |
| } |
| pCur->bDesc = pCur->iOStep<0; |
| if( pCur->bDesc==0 && pCur->iBase>pCur->iTerm ){ |
| goto series_no_rows; |
| } |
| if( pCur->bDesc!=0 && pCur->iBase<pCur->iTerm ){ |
| goto series_no_rows; |
| } |
| |
| /* Extract the LIMIT and OFFSET values, but do not apply them yet. |
| ** The range must first be constrained by the limits on value. |
| */ |
| if( idxNum & 0x20 ){ |
| iLimit = sqlite3_value_int64(argv[iArg++]); |
| if( idxNum & 0x40 ){ |
| iOffset = sqlite3_value_int64(argv[iArg++]); |
| } |
| } |
| |
| /* Narrow the range of iMin and iMax (the minimum and maximum outputs) |
| ** based on equality and inequality constraints on the "value" column. |
| */ |
| if( idxNum & 0x3380 ){ |
| if( idxNum & 0x0080 ){ /* value=X */ |
| if( sqlite3_value_numeric_type(argv[iArg])==SQLITE_FLOAT ){ |
| double r = sqlite3_value_double(argv[iArg++]); |
| if( r==seriesCeil(r) |
| && r>=(double)SMALLEST_INT64 |
| && r<=(double)LARGEST_INT64 |
| ){ |
| iMin = iMax = (sqlite3_int64)r; |
| }else{ |
| goto series_no_rows; |
| } |
| }else{ |
| iMin = iMax = sqlite3_value_int64(argv[iArg++]); |
| } |
| }else{ |
| if( idxNum & 0x0300 ){ /* value>X or value>=X */ |
| if( sqlite3_value_numeric_type(argv[iArg])==SQLITE_FLOAT ){ |
| double r = sqlite3_value_double(argv[iArg++]); |
| if( r<(double)SMALLEST_INT64 ){ |
| iMin = SMALLEST_INT64; |
| }else if( (idxNum & 0x0200)!=0 && r==seriesCeil(r) ){ |
| iMin = (sqlite3_int64)seriesCeil(r+1.0); |
| }else{ |
| iMin = (sqlite3_int64)seriesCeil(r); |
| } |
| }else{ |
| iMin = sqlite3_value_int64(argv[iArg++]); |
| if( (idxNum & 0x0200)!=0 ){ |
| if( iMin==LARGEST_INT64 ){ |
| goto series_no_rows; |
| }else{ |
| iMin++; |
| } |
| } |
| } |
| } |
| if( idxNum & 0x3000 ){ /* value<X or value<=X */ |
| if( sqlite3_value_numeric_type(argv[iArg])==SQLITE_FLOAT ){ |
| double r = sqlite3_value_double(argv[iArg++]); |
| if( r>(double)LARGEST_INT64 ){ |
| iMax = LARGEST_INT64; |
| }else if( (idxNum & 0x2000)!=0 && r==seriesFloor(r) ){ |
| iMax = (sqlite3_int64)(r-1.0); |
| }else{ |
| iMax = (sqlite3_int64)seriesFloor(r); |
| } |
| }else{ |
| iMax = sqlite3_value_int64(argv[iArg++]); |
| if( idxNum & 0x2000 ){ |
| if( iMax==SMALLEST_INT64 ){ |
| goto series_no_rows; |
| }else{ |
| iMax--; |
| } |
| } |
| } |
| } |
| if( iMin>iMax ){ |
| goto series_no_rows; |
| } |
| } |
| |
| /* Try to reduce the range of values to be generated based on |
| ** constraints on the "value" column. |
| */ |
| if( pCur->bDesc==0 ){ |
| if( pCur->iBase<iMin ){ |
| sqlite3_uint64 span = span64(iMin,pCur->iBase); |
| pCur->iBase = add64(pCur->iBase, (span/pCur->iStep)*pCur->iStep); |
| if( pCur->iBase<iMin ){ |
| if( pCur->iBase > sub64(LARGEST_INT64, pCur->iStep) ){ |
| goto series_no_rows; |
| } |
| pCur->iBase = add64(pCur->iBase, pCur->iStep); |
| } |
| } |
| if( pCur->iTerm>iMax ){ |
| pCur->iTerm = iMax; |
| } |
| }else{ |
| if( pCur->iBase>iMax ){ |
| sqlite3_uint64 span = span64(pCur->iBase,iMax); |
| pCur->iBase = sub64(pCur->iBase, (span/pCur->iStep)*pCur->iStep); |
| if( pCur->iBase>iMax ){ |
| if( pCur->iBase < add64(SMALLEST_INT64, pCur->iStep) ){ |
| goto series_no_rows; |
| } |
| pCur->iBase = sub64(pCur->iBase, pCur->iStep); |
| } |
| } |
| if( pCur->iTerm<iMin ){ |
| pCur->iTerm = iMin; |
| } |
| } |
| } |
| |
| /* Adjust iTerm so that it is exactly the last value of the series. |
| */ |
| if( pCur->bDesc==0 ){ |
| if( pCur->iBase>pCur->iTerm ){ |
| goto series_no_rows; |
| } |
| pCur->iTerm = sub64(pCur->iTerm, |
| span64(pCur->iTerm,pCur->iBase) % pCur->iStep); |
| }else{ |
| if( pCur->iBase<pCur->iTerm ){ |
| goto series_no_rows; |
| } |
| pCur->iTerm = add64(pCur->iTerm, |
| span64(pCur->iBase,pCur->iTerm) % pCur->iStep); |
| } |
| |
| /* Transform the series generator to output values in the requested |
| ** order. |
| */ |
| if( ((idxNum & 0x0008)!=0 && pCur->bDesc==0) |
| || ((idxNum & 0x0010)!=0 && pCur->bDesc!=0) |
| ){ |
| sqlite3_int64 tmp = pCur->iBase; |
| pCur->iBase = pCur->iTerm; |
| pCur->iTerm = tmp; |
| pCur->bDesc = !pCur->bDesc; |
| } |
| |
| /* Apply LIMIT and OFFSET constraints, if any */ |
| assert( pCur->iStep!=0 ); |
| if( idxNum & 0x20 ){ |
| if( iOffset>0 ){ |
| if( seriesSteps(pCur) < (sqlite3_uint64)iOffset ){ |
| goto series_no_rows; |
| }else if( pCur->bDesc ){ |
| pCur->iBase = sub64(pCur->iBase, pCur->iStep*iOffset); |
| }else{ |
| pCur->iBase = add64(pCur->iBase, pCur->iStep*iOffset); |
| } |
| } |
| if( iLimit>=0 && seriesSteps(pCur) > (sqlite3_uint64)iLimit ){ |
| pCur->iTerm = add64(pCur->iBase, (iLimit - 1)*pCur->iStep); |
| } |
| } |
| pCur->iValue = pCur->iBase; |
| pCur->bDone = 0; |
| return SQLITE_OK; |
| |
| series_no_rows: |
| pCur->iBase = 0; |
| pCur->iTerm = 0; |
| pCur->iStep = 1; |
| pCur->bDesc = 0; |
| pCur->bDone = 1; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** SQLite will invoke this method one or more times while planning a query |
| ** that uses the generate_series virtual table. This routine needs to create |
| ** a query plan for each invocation and compute an estimated cost for that |
| ** plan. |
| ** |
| ** In this implementation idxNum is used to represent the |
| ** query plan. idxStr is unused. |
| ** |
| ** The query plan is represented by bits in idxNum: |
| ** |
| ** 0x0001 start = $num |
| ** 0x0002 stop = $num |
| ** 0x0004 step = $num |
| ** 0x0008 output is in descending order |
| ** 0x0010 output is in ascending order |
| ** 0x0020 LIMIT $num |
| ** 0x0040 OFFSET $num |
| ** 0x0080 value = $num |
| ** 0x0100 value >= $num |
| ** 0x0200 value > $num |
| ** 0x1000 value <= $num |
| ** 0x2000 value < $num |
| ** |
| ** Only one of 0x0100 or 0x0200 will be returned. Similarly, only |
| ** one of 0x1000 or 0x2000 will be returned. If the 0x0080 is set, then |
| ** none of the 0xff00 bits will be set. |
| ** |
| ** The order of parameters passed to xFilter is as follows: |
| ** |
| ** * The argument to start= if bit 0x0001 is in the idxNum mask |
| ** * The argument to stop= if bit 0x0002 is in the idxNum mask |
| ** * The argument to step= if bit 0x0004 is in the idxNum mask |
| ** * The argument to LIMIT if bit 0x0020 is in the idxNum mask |
| ** * The argument to OFFSET if bit 0x0040 is in the idxNum mask |
| ** * The argument to value=, or value>= or value> if any of |
| ** bits 0x0380 are in the idxNum mask |
| ** * The argument to value<= or value< if either of bits 0x3000 |
| ** are in the mask |
| ** |
| */ |
| static int seriesBestIndex( |
| sqlite3_vtab *pVTab, |
| sqlite3_index_info *pIdxInfo |
| ){ |
| int i, j; /* Loop over constraints */ |
| int idxNum = 0; /* The query plan bitmask */ |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| int bStartSeen = 0; /* EQ constraint seen on the START column */ |
| #endif |
| int unusableMask = 0; /* Mask of unusable constraints */ |
| int nArg = 0; /* Number of arguments that seriesFilter() expects */ |
| int aIdx[7]; /* Constraints on start, stop, step, LIMIT, OFFSET, |
| ** and value. aIdx[5] covers value=, value>=, and |
| ** value>, aIdx[6] covers value<= and value< */ |
| const struct sqlite3_index_constraint *pConstraint; |
| |
| /* This implementation assumes that the start, stop, and step columns |
| ** are the last three columns in the virtual table. */ |
| assert( SERIES_COLUMN_STOP == SERIES_COLUMN_START+1 ); |
| assert( SERIES_COLUMN_STEP == SERIES_COLUMN_START+2 ); |
| |
| aIdx[0] = aIdx[1] = aIdx[2] = aIdx[3] = aIdx[4] = aIdx[5] = aIdx[6] = -1; |
| pConstraint = pIdxInfo->aConstraint; |
| for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| int iCol; /* 0 for start, 1 for stop, 2 for step */ |
| int iMask; /* bitmask for those column */ |
| int op = pConstraint->op; |
| if( op>=SQLITE_INDEX_CONSTRAINT_LIMIT |
| && op<=SQLITE_INDEX_CONSTRAINT_OFFSET |
| ){ |
| if( pConstraint->usable==0 ){ |
| /* do nothing */ |
| }else if( op==SQLITE_INDEX_CONSTRAINT_LIMIT ){ |
| aIdx[3] = i; |
| idxNum |= 0x20; |
| }else{ |
| assert( op==SQLITE_INDEX_CONSTRAINT_OFFSET ); |
| aIdx[4] = i; |
| idxNum |= 0x40; |
| } |
| continue; |
| } |
| if( pConstraint->iColumn<SERIES_COLUMN_START ){ |
| if( (pConstraint->iColumn==SERIES_COLUMN_VALUE || |
| pConstraint->iColumn==SERIES_COLUMN_ROWID) |
| && pConstraint->usable |
| ){ |
| switch( op ){ |
| case SQLITE_INDEX_CONSTRAINT_EQ: |
| case SQLITE_INDEX_CONSTRAINT_IS: { |
| idxNum |= 0x0080; |
| idxNum &= ~0x3300; |
| aIdx[5] = i; |
| aIdx[6] = -1; |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| bStartSeen = 1; |
| #endif |
| break; |
| } |
| case SQLITE_INDEX_CONSTRAINT_GE: { |
| if( idxNum & 0x0080 ) break; |
| idxNum |= 0x0100; |
| idxNum &= ~0x0200; |
| aIdx[5] = i; |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| bStartSeen = 1; |
| #endif |
| break; |
| } |
| case SQLITE_INDEX_CONSTRAINT_GT: { |
| if( idxNum & 0x0080 ) break; |
| idxNum |= 0x0200; |
| idxNum &= ~0x0100; |
| aIdx[5] = i; |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| bStartSeen = 1; |
| #endif |
| break; |
| } |
| case SQLITE_INDEX_CONSTRAINT_LE: { |
| if( idxNum & 0x0080 ) break; |
| idxNum |= 0x1000; |
| idxNum &= ~0x2000; |
| aIdx[6] = i; |
| break; |
| } |
| case SQLITE_INDEX_CONSTRAINT_LT: { |
| if( idxNum & 0x0080 ) break; |
| idxNum |= 0x2000; |
| idxNum &= ~0x1000; |
| aIdx[6] = i; |
| break; |
| } |
| } |
| } |
| continue; |
| } |
| iCol = pConstraint->iColumn - SERIES_COLUMN_START; |
| assert( iCol>=0 && iCol<=2 ); |
| iMask = 1 << iCol; |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| if( iCol==0 && op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| bStartSeen = 1; |
| } |
| #endif |
| if( pConstraint->usable==0 ){ |
| unusableMask |= iMask; |
| continue; |
| }else if( op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| idxNum |= iMask; |
| aIdx[iCol] = i; |
| } |
| } |
| if( aIdx[3]==0 ){ |
| /* Ignore OFFSET if LIMIT is omitted */ |
| idxNum &= ~0x60; |
| aIdx[4] = 0; |
| } |
| for(i=0; i<7; i++){ |
| if( (j = aIdx[i])>=0 ){ |
| pIdxInfo->aConstraintUsage[j].argvIndex = ++nArg; |
| pIdxInfo->aConstraintUsage[j].omit = |
| !SQLITE_SERIES_CONSTRAINT_VERIFY || i>=3; |
| } |
| } |
| /* The current generate_column() implementation requires at least one |
| ** argument (the START value). Legacy versions assumed START=0 if the |
| ** first argument was omitted. Compile with -DZERO_ARGUMENT_GENERATE_SERIES |
| ** to obtain the legacy behavior */ |
| #ifndef ZERO_ARGUMENT_GENERATE_SERIES |
| if( !bStartSeen ){ |
| sqlite3_free(pVTab->zErrMsg); |
| pVTab->zErrMsg = sqlite3_mprintf( |
| "first argument to \"generate_series()\" missing or unusable"); |
| return SQLITE_ERROR; |
| } |
| #endif |
| if( (unusableMask & ~idxNum)!=0 ){ |
| /* The start, stop, and step columns are inputs. Therefore if there |
| ** are unusable constraints on any of start, stop, or step then |
| ** this plan is unusable */ |
| return SQLITE_CONSTRAINT; |
| } |
| if( (idxNum & 0x03)==0x03 ){ |
| /* Both start= and stop= boundaries are available. This is the |
| ** the preferred case */ |
| pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0)); |
| pIdxInfo->estimatedRows = 1000; |
| if( pIdxInfo->nOrderBy>=1 && pIdxInfo->aOrderBy[0].iColumn==0 ){ |
| if( pIdxInfo->aOrderBy[0].desc ){ |
| idxNum |= 0x08; |
| }else{ |
| idxNum |= 0x10; |
| } |
| pIdxInfo->orderByConsumed = 1; |
| } |
| }else if( (idxNum & 0x21)==0x21 ){ |
| /* We have start= and LIMIT */ |
| pIdxInfo->estimatedRows = 2500; |
| }else{ |
| /* If either boundary is missing, we have to generate a huge span |
| ** of numbers. Make this case very expensive so that the query |
| ** planner will work hard to avoid it. */ |
| pIdxInfo->estimatedRows = 2147483647; |
| } |
| pIdxInfo->idxNum = idxNum; |
| #ifdef SQLITE_INDEX_SCAN_HEX |
| pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_HEX; |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This following structure defines all the methods for the |
| ** generate_series virtual table. |
| */ |
| static sqlite3_module seriesModule = { |
| 0, /* iVersion */ |
| 0, /* xCreate */ |
| seriesConnect, /* xConnect */ |
| seriesBestIndex, /* xBestIndex */ |
| seriesDisconnect, /* xDisconnect */ |
| 0, /* xDestroy */ |
| seriesOpen, /* xOpen - open a cursor */ |
| seriesClose, /* xClose - close a cursor */ |
| seriesFilter, /* xFilter - configure scan constraints */ |
| seriesNext, /* xNext - advance a cursor */ |
| seriesEof, /* xEof - check for end of scan */ |
| seriesColumn, /* xColumn - read data */ |
| seriesRowid, /* xRowid - read data */ |
| 0, /* xUpdate */ |
| 0, /* xBegin */ |
| 0, /* xSync */ |
| 0, /* xCommit */ |
| 0, /* xRollback */ |
| 0, /* xFindMethod */ |
| 0, /* xRename */ |
| 0, /* xSavepoint */ |
| 0, /* xRelease */ |
| 0, /* xRollbackTo */ |
| 0, /* xShadowName */ |
| 0 /* xIntegrity */ |
| }; |
| |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| |
| #ifdef _WIN32 |
| __declspec(dllexport) |
| #endif |
| int sqlite3_series_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| int rc = SQLITE_OK; |
| SQLITE_EXTENSION_INIT2(pApi); |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( sqlite3_libversion_number()<3008012 && pzErrMsg!=0 ){ |
| *pzErrMsg = sqlite3_mprintf( |
| "generate_series() requires SQLite 3.8.12 or later"); |
| return SQLITE_ERROR; |
| } |
| rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0); |
| #endif |
| return rc; |
| } |