| // TODO: strip out parts of this we do not need |
| |
| //======= begin closure i64 code ======= |
| |
| // Copyright 2009 The Closure Library Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS-IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| /** |
| * @fileoverview Defines a Long class for representing a 64-bit two's-complement |
| * integer value, which faithfully simulates the behavior of a Java "long". This |
| * implementation is derived from LongLib in GWT. |
| * |
| */ |
| |
| var i64Math = (function() { // Emscripten wrapper |
| var goog = { math: {} }; |
| |
| |
| /** |
| * Constructs a 64-bit two's-complement integer, given its low and high 32-bit |
| * values as *signed* integers. See the from* functions below for more |
| * convenient ways of constructing Longs. |
| * |
| * The internal representation of a long is the two given signed, 32-bit values. |
| * We use 32-bit pieces because these are the size of integers on which |
| * Javascript performs bit-operations. For operations like addition and |
| * multiplication, we split each number into 16-bit pieces, which can easily be |
| * multiplied within Javascript's floating-point representation without overflow |
| * or change in sign. |
| * |
| * In the algorithms below, we frequently reduce the negative case to the |
| * positive case by negating the input(s) and then post-processing the result. |
| * Note that we must ALWAYS check specially whether those values are MIN_VALUE |
| * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as |
| * a positive number, it overflows back into a negative). Not handling this |
| * case would often result in infinite recursion. |
| * |
| * @param {number} low The low (signed) 32 bits of the long. |
| * @param {number} high The high (signed) 32 bits of the long. |
| * @constructor |
| */ |
| goog.math.Long = function(low, high) { |
| /** |
| * @type {number} |
| * @private |
| */ |
| this.low_ = low | 0; // force into 32 signed bits. |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| this.high_ = high | 0; // force into 32 signed bits. |
| }; |
| |
| |
| // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the |
| // from* methods on which they depend. |
| |
| |
| /** |
| * A cache of the Long representations of small integer values. |
| * @type {!Object} |
| * @private |
| */ |
| goog.math.Long.IntCache_ = {}; |
| |
| |
| /** |
| * Returns a Long representing the given (32-bit) integer value. |
| * @param {number} value The 32-bit integer in question. |
| * @return {!goog.math.Long} The corresponding Long value. |
| */ |
| goog.math.Long.fromInt = function(value) { |
| if (-128 <= value && value < 128) { |
| var cachedObj = goog.math.Long.IntCache_[value]; |
| if (cachedObj) { |
| return cachedObj; |
| } |
| } |
| |
| var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0); |
| if (-128 <= value && value < 128) { |
| goog.math.Long.IntCache_[value] = obj; |
| } |
| return obj; |
| }; |
| |
| |
| /** |
| * Returns a Long representing the given value, provided that it is a finite |
| * number. Otherwise, zero is returned. |
| * @param {number} value The number in question. |
| * @return {!goog.math.Long} The corresponding Long value. |
| */ |
| goog.math.Long.fromNumber = function(value) { |
| if (isNaN(value) || !isFinite(value)) { |
| return goog.math.Long.ZERO; |
| } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) { |
| return goog.math.Long.MIN_VALUE; |
| } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) { |
| return goog.math.Long.MAX_VALUE; |
| } else if (value < 0) { |
| return goog.math.Long.fromNumber(-value).negate(); |
| } else { |
| return new goog.math.Long( |
| (value % goog.math.Long.TWO_PWR_32_DBL_) | 0, |
| (value / goog.math.Long.TWO_PWR_32_DBL_) | 0); |
| } |
| }; |
| |
| |
| /** |
| * Returns a Long representing the 64-bit integer that comes by concatenating |
| * the given high and low bits. Each is assumed to use 32 bits. |
| * @param {number} lowBits The low 32-bits. |
| * @param {number} highBits The high 32-bits. |
| * @return {!goog.math.Long} The corresponding Long value. |
| */ |
| goog.math.Long.fromBits = function(lowBits, highBits) { |
| return new goog.math.Long(lowBits, highBits); |
| }; |
| |
| |
| /** |
| * Returns a Long representation of the given string, written using the given |
| * radix. |
| * @param {string} str The textual representation of the Long. |
| * @param {number=} opt_radix The radix in which the text is written. |
| * @return {!goog.math.Long} The corresponding Long value. |
| */ |
| goog.math.Long.fromString = function(str, opt_radix) { |
| if (str.length == 0) { |
| throw Error('number format error: empty string'); |
| } |
| |
| var radix = opt_radix || 10; |
| if (radix < 2 || 36 < radix) { |
| throw Error('radix out of range: ' + radix); |
| } |
| |
| if (str.charAt(0) == '-') { |
| return goog.math.Long.fromString(str.substring(1), radix).negate(); |
| } else if (str.indexOf('-') >= 0) { |
| throw Error('number format error: interior "-" character: ' + str); |
| } |
| |
| // Do several (8) digits each time through the loop, so as to |
| // minimize the calls to the very expensive emulated div. |
| var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8)); |
| |
| var result = goog.math.Long.ZERO; |
| for (var i = 0; i < str.length; i += 8) { |
| var size = Math.min(8, str.length - i); |
| var value = parseInt(str.substring(i, i + size), radix); |
| if (size < 8) { |
| var power = goog.math.Long.fromNumber(Math.pow(radix, size)); |
| result = result.multiply(power).add(goog.math.Long.fromNumber(value)); |
| } else { |
| result = result.multiply(radixToPower); |
| result = result.add(goog.math.Long.fromNumber(value)); |
| } |
| } |
| return result; |
| }; |
| |
| |
| // NOTE: the compiler should inline these constant values below and then remove |
| // these variables, so there should be no runtime penalty for these. |
| |
| |
| /** |
| * Number used repeated below in calculations. This must appear before the |
| * first call to any from* function below. |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_32_DBL_ = |
| goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_31_DBL_ = |
| goog.math.Long.TWO_PWR_32_DBL_ / 2; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_48_DBL_ = |
| goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_64_DBL_ = |
| goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_; |
| |
| |
| /** |
| * @type {number} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_63_DBL_ = |
| goog.math.Long.TWO_PWR_64_DBL_ / 2; |
| |
| |
| /** @type {!goog.math.Long} */ |
| goog.math.Long.ZERO = goog.math.Long.fromInt(0); |
| |
| |
| /** @type {!goog.math.Long} */ |
| goog.math.Long.ONE = goog.math.Long.fromInt(1); |
| |
| |
| /** @type {!goog.math.Long} */ |
| goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1); |
| |
| |
| /** @type {!goog.math.Long} */ |
| goog.math.Long.MAX_VALUE = |
| goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0); |
| |
| |
| /** @type {!goog.math.Long} */ |
| goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0); |
| |
| |
| /** |
| * @type {!goog.math.Long} |
| * @private |
| */ |
| goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24); |
| |
| |
| /** @return {number} The value, assuming it is a 32-bit integer. */ |
| goog.math.Long.prototype.toInt = function() { |
| return this.low_; |
| }; |
| |
| |
| /** @return {number} The closest floating-point representation to this value. */ |
| goog.math.Long.prototype.toNumber = function() { |
| return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ + |
| this.getLowBitsUnsigned(); |
| }; |
| |
| |
| /** |
| * @param {number=} opt_radix The radix in which the text should be written. |
| * @return {string} The textual representation of this value. |
| */ |
| goog.math.Long.prototype.toString = function(opt_radix) { |
| var radix = opt_radix || 10; |
| if (radix < 2 || 36 < radix) { |
| throw Error('radix out of range: ' + radix); |
| } |
| |
| if (this.isZero()) { |
| return '0'; |
| } |
| |
| if (this.isNegative()) { |
| if (this.equals(goog.math.Long.MIN_VALUE)) { |
| // We need to change the Long value before it can be negated, so we remove |
| // the bottom-most digit in this base and then recurse to do the rest. |
| var radixLong = goog.math.Long.fromNumber(radix); |
| var div = this.div(radixLong); |
| var rem = div.multiply(radixLong).subtract(this); |
| return div.toString(radix) + rem.toInt().toString(radix); |
| } else { |
| return '-' + this.negate().toString(radix); |
| } |
| } |
| |
| // Do several (6) digits each time through the loop, so as to |
| // minimize the calls to the very expensive emulated div. |
| var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6)); |
| |
| var rem = this; |
| var result = ''; |
| while (true) { |
| var remDiv = rem.div(radixToPower); |
| var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt(); |
| var digits = intval.toString(radix); |
| |
| rem = remDiv; |
| if (rem.isZero()) { |
| return digits + result; |
| } else { |
| while (digits.length < 6) { |
| digits = '0' + digits; |
| } |
| result = '' + digits + result; |
| } |
| } |
| }; |
| |
| |
| /** @return {number} The high 32-bits as a signed value. */ |
| goog.math.Long.prototype.getHighBits = function() { |
| return this.high_; |
| }; |
| |
| |
| /** @return {number} The low 32-bits as a signed value. */ |
| goog.math.Long.prototype.getLowBits = function() { |
| return this.low_; |
| }; |
| |
| |
| /** @return {number} The low 32-bits as an unsigned value. */ |
| goog.math.Long.prototype.getLowBitsUnsigned = function() { |
| return (this.low_ >= 0) ? |
| this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_; |
| }; |
| |
| |
| /** |
| * @return {number} Returns the number of bits needed to represent the absolute |
| * value of this Long. |
| */ |
| goog.math.Long.prototype.getNumBitsAbs = function() { |
| if (this.isNegative()) { |
| if (this.equals(goog.math.Long.MIN_VALUE)) { |
| return 64; |
| } else { |
| return this.negate().getNumBitsAbs(); |
| } |
| } else { |
| var val = this.high_ != 0 ? this.high_ : this.low_; |
| for (var bit = 31; bit > 0; bit--) { |
| if ((val & (1 << bit)) != 0) { |
| break; |
| } |
| } |
| return this.high_ != 0 ? bit + 33 : bit + 1; |
| } |
| }; |
| |
| |
| /** @return {boolean} Whether this value is zero. */ |
| goog.math.Long.prototype.isZero = function() { |
| return this.high_ == 0 && this.low_ == 0; |
| }; |
| |
| |
| /** @return {boolean} Whether this value is negative. */ |
| goog.math.Long.prototype.isNegative = function() { |
| return this.high_ < 0; |
| }; |
| |
| |
| /** @return {boolean} Whether this value is odd. */ |
| goog.math.Long.prototype.isOdd = function() { |
| return (this.low_ & 1) == 1; |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long equals the other. |
| */ |
| goog.math.Long.prototype.equals = function(other) { |
| return (this.high_ == other.high_) && (this.low_ == other.low_); |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long does not equal the other. |
| */ |
| goog.math.Long.prototype.notEquals = function(other) { |
| return (this.high_ != other.high_) || (this.low_ != other.low_); |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long is less than the other. |
| */ |
| goog.math.Long.prototype.lessThan = function(other) { |
| return this.compare(other) < 0; |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long is less than or equal to the other. |
| */ |
| goog.math.Long.prototype.lessThanOrEqual = function(other) { |
| return this.compare(other) <= 0; |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long is greater than the other. |
| */ |
| goog.math.Long.prototype.greaterThan = function(other) { |
| return this.compare(other) > 0; |
| }; |
| |
| |
| /** |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {boolean} Whether this Long is greater than or equal to the other. |
| */ |
| goog.math.Long.prototype.greaterThanOrEqual = function(other) { |
| return this.compare(other) >= 0; |
| }; |
| |
| |
| /** |
| * Compares this Long with the given one. |
| * @param {goog.math.Long} other Long to compare against. |
| * @return {number} 0 if they are the same, 1 if the this is greater, and -1 |
| * if the given one is greater. |
| */ |
| goog.math.Long.prototype.compare = function(other) { |
| if (this.equals(other)) { |
| return 0; |
| } |
| |
| var thisNeg = this.isNegative(); |
| var otherNeg = other.isNegative(); |
| if (thisNeg && !otherNeg) { |
| return -1; |
| } |
| if (!thisNeg && otherNeg) { |
| return 1; |
| } |
| |
| // at this point, the signs are the same, so subtraction will not overflow |
| if (this.subtract(other).isNegative()) { |
| return -1; |
| } else { |
| return 1; |
| } |
| }; |
| |
| |
| /** @return {!goog.math.Long} The negation of this value. */ |
| goog.math.Long.prototype.negate = function() { |
| if (this.equals(goog.math.Long.MIN_VALUE)) { |
| return goog.math.Long.MIN_VALUE; |
| } else { |
| return this.not().add(goog.math.Long.ONE); |
| } |
| }; |
| |
| |
| /** |
| * Returns the sum of this and the given Long. |
| * @param {goog.math.Long} other Long to add to this one. |
| * @return {!goog.math.Long} The sum of this and the given Long. |
| */ |
| goog.math.Long.prototype.add = function(other) { |
| // Divide each number into 4 chunks of 16 bits, and then sum the chunks. |
| |
| var a48 = this.high_ >>> 16; |
| var a32 = this.high_ & 0xFFFF; |
| var a16 = this.low_ >>> 16; |
| var a00 = this.low_ & 0xFFFF; |
| |
| var b48 = other.high_ >>> 16; |
| var b32 = other.high_ & 0xFFFF; |
| var b16 = other.low_ >>> 16; |
| var b00 = other.low_ & 0xFFFF; |
| |
| var c48 = 0, c32 = 0, c16 = 0, c00 = 0; |
| c00 += a00 + b00; |
| c16 += c00 >>> 16; |
| c00 &= 0xFFFF; |
| c16 += a16 + b16; |
| c32 += c16 >>> 16; |
| c16 &= 0xFFFF; |
| c32 += a32 + b32; |
| c48 += c32 >>> 16; |
| c32 &= 0xFFFF; |
| c48 += a48 + b48; |
| c48 &= 0xFFFF; |
| return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); |
| }; |
| |
| |
| /** |
| * Returns the difference of this and the given Long. |
| * @param {goog.math.Long} other Long to subtract from this. |
| * @return {!goog.math.Long} The difference of this and the given Long. |
| */ |
| goog.math.Long.prototype.subtract = function(other) { |
| return this.add(other.negate()); |
| }; |
| |
| |
| /** |
| * Returns the product of this and the given long. |
| * @param {goog.math.Long} other Long to multiply with this. |
| * @return {!goog.math.Long} The product of this and the other. |
| */ |
| goog.math.Long.prototype.multiply = function(other) { |
| if (this.isZero()) { |
| return goog.math.Long.ZERO; |
| } else if (other.isZero()) { |
| return goog.math.Long.ZERO; |
| } |
| |
| if (this.equals(goog.math.Long.MIN_VALUE)) { |
| return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO; |
| } else if (other.equals(goog.math.Long.MIN_VALUE)) { |
| return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO; |
| } |
| |
| if (this.isNegative()) { |
| if (other.isNegative()) { |
| return this.negate().multiply(other.negate()); |
| } else { |
| return this.negate().multiply(other).negate(); |
| } |
| } else if (other.isNegative()) { |
| return this.multiply(other.negate()).negate(); |
| } |
| |
| // If both longs are small, use float multiplication |
| if (this.lessThan(goog.math.Long.TWO_PWR_24_) && |
| other.lessThan(goog.math.Long.TWO_PWR_24_)) { |
| return goog.math.Long.fromNumber(this.toNumber() * other.toNumber()); |
| } |
| |
| // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. |
| // We can skip products that would overflow. |
| |
| var a48 = this.high_ >>> 16; |
| var a32 = this.high_ & 0xFFFF; |
| var a16 = this.low_ >>> 16; |
| var a00 = this.low_ & 0xFFFF; |
| |
| var b48 = other.high_ >>> 16; |
| var b32 = other.high_ & 0xFFFF; |
| var b16 = other.low_ >>> 16; |
| var b00 = other.low_ & 0xFFFF; |
| |
| var c48 = 0, c32 = 0, c16 = 0, c00 = 0; |
| c00 += a00 * b00; |
| c16 += c00 >>> 16; |
| c00 &= 0xFFFF; |
| c16 += a16 * b00; |
| c32 += c16 >>> 16; |
| c16 &= 0xFFFF; |
| c16 += a00 * b16; |
| c32 += c16 >>> 16; |
| c16 &= 0xFFFF; |
| c32 += a32 * b00; |
| c48 += c32 >>> 16; |
| c32 &= 0xFFFF; |
| c32 += a16 * b16; |
| c48 += c32 >>> 16; |
| c32 &= 0xFFFF; |
| c32 += a00 * b32; |
| c48 += c32 >>> 16; |
| c32 &= 0xFFFF; |
| c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; |
| c48 &= 0xFFFF; |
| return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); |
| }; |
| |
| |
| /** |
| * Returns this Long divided by the given one. |
| * @param {goog.math.Long} other Long by which to divide. |
| * @return {!goog.math.Long} This Long divided by the given one. |
| */ |
| goog.math.Long.prototype.div = function(other) { |
| if (other.isZero()) { |
| throw Error('division by zero'); |
| } else if (this.isZero()) { |
| return goog.math.Long.ZERO; |
| } |
| |
| if (this.equals(goog.math.Long.MIN_VALUE)) { |
| if (other.equals(goog.math.Long.ONE) || |
| other.equals(goog.math.Long.NEG_ONE)) { |
| return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE |
| } else if (other.equals(goog.math.Long.MIN_VALUE)) { |
| return goog.math.Long.ONE; |
| } else { |
| // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. |
| var halfThis = this.shiftRight(1); |
| var approx = halfThis.div(other).shiftLeft(1); |
| if (approx.equals(goog.math.Long.ZERO)) { |
| return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE; |
| } else { |
| var rem = this.subtract(other.multiply(approx)); |
| var result = approx.add(rem.div(other)); |
| return result; |
| } |
| } |
| } else if (other.equals(goog.math.Long.MIN_VALUE)) { |
| return goog.math.Long.ZERO; |
| } |
| |
| if (this.isNegative()) { |
| if (other.isNegative()) { |
| return this.negate().div(other.negate()); |
| } else { |
| return this.negate().div(other).negate(); |
| } |
| } else if (other.isNegative()) { |
| return this.div(other.negate()).negate(); |
| } |
| |
| // Repeat the following until the remainder is less than other: find a |
| // floating-point that approximates remainder / other *from below*, add this |
| // into the result, and subtract it from the remainder. It is critical that |
| // the approximate value is less than or equal to the real value so that the |
| // remainder never becomes negative. |
| var res = goog.math.Long.ZERO; |
| var rem = this; |
| while (rem.greaterThanOrEqual(other)) { |
| // Approximate the result of division. This may be a little greater or |
| // smaller than the actual value. |
| var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); |
| |
| // We will tweak the approximate result by changing it in the 48-th digit or |
| // the smallest non-fractional digit, whichever is larger. |
| var log2 = Math.ceil(Math.log(approx) / Math.LN2); |
| var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); |
| |
| // Decrease the approximation until it is smaller than the remainder. Note |
| // that if it is too large, the product overflows and is negative. |
| var approxRes = goog.math.Long.fromNumber(approx); |
| var approxRem = approxRes.multiply(other); |
| while (approxRem.isNegative() || approxRem.greaterThan(rem)) { |
| approx -= delta; |
| approxRes = goog.math.Long.fromNumber(approx); |
| approxRem = approxRes.multiply(other); |
| } |
| |
| // We know the answer can't be zero... and actually, zero would cause |
| // infinite recursion since we would make no progress. |
| if (approxRes.isZero()) { |
| approxRes = goog.math.Long.ONE; |
| } |
| |
| res = res.add(approxRes); |
| rem = rem.subtract(approxRem); |
| } |
| return res; |
| }; |
| |
| |
| /** |
| * Returns this Long modulo the given one. |
| * @param {goog.math.Long} other Long by which to mod. |
| * @return {!goog.math.Long} This Long modulo the given one. |
| */ |
| goog.math.Long.prototype.modulo = function(other) { |
| return this.subtract(this.div(other).multiply(other)); |
| }; |
| |
| |
| /** @return {!goog.math.Long} The bitwise-NOT of this value. */ |
| goog.math.Long.prototype.not = function() { |
| return goog.math.Long.fromBits(~this.low_, ~this.high_); |
| }; |
| |
| |
| /** |
| * Returns the bitwise-AND of this Long and the given one. |
| * @param {goog.math.Long} other The Long with which to AND. |
| * @return {!goog.math.Long} The bitwise-AND of this and the other. |
| */ |
| goog.math.Long.prototype.and = function(other) { |
| return goog.math.Long.fromBits(this.low_ & other.low_, |
| this.high_ & other.high_); |
| }; |
| |
| |
| /** |
| * Returns the bitwise-OR of this Long and the given one. |
| * @param {goog.math.Long} other The Long with which to OR. |
| * @return {!goog.math.Long} The bitwise-OR of this and the other. |
| */ |
| goog.math.Long.prototype.or = function(other) { |
| return goog.math.Long.fromBits(this.low_ | other.low_, |
| this.high_ | other.high_); |
| }; |
| |
| |
| /** |
| * Returns the bitwise-XOR of this Long and the given one. |
| * @param {goog.math.Long} other The Long with which to XOR. |
| * @return {!goog.math.Long} The bitwise-XOR of this and the other. |
| */ |
| goog.math.Long.prototype.xor = function(other) { |
| return goog.math.Long.fromBits(this.low_ ^ other.low_, |
| this.high_ ^ other.high_); |
| }; |
| |
| |
| /** |
| * Returns this Long with bits shifted to the left by the given amount. |
| * @param {number} numBits The number of bits by which to shift. |
| * @return {!goog.math.Long} This shifted to the left by the given amount. |
| */ |
| goog.math.Long.prototype.shiftLeft = function(numBits) { |
| numBits &= 63; |
| if (numBits == 0) { |
| return this; |
| } else { |
| var low = this.low_; |
| if (numBits < 32) { |
| var high = this.high_; |
| return goog.math.Long.fromBits( |
| low << numBits, |
| (high << numBits) | (low >>> (32 - numBits))); |
| } else { |
| return goog.math.Long.fromBits(0, low << (numBits - 32)); |
| } |
| } |
| }; |
| |
| |
| /** |
| * Returns this Long with bits shifted to the right by the given amount. |
| * @param {number} numBits The number of bits by which to shift. |
| * @return {!goog.math.Long} This shifted to the right by the given amount. |
| */ |
| goog.math.Long.prototype.shiftRight = function(numBits) { |
| numBits &= 63; |
| if (numBits == 0) { |
| return this; |
| } else { |
| var high = this.high_; |
| if (numBits < 32) { |
| var low = this.low_; |
| return goog.math.Long.fromBits( |
| (low >>> numBits) | (high << (32 - numBits)), |
| high >> numBits); |
| } else { |
| return goog.math.Long.fromBits( |
| high >> (numBits - 32), |
| high >= 0 ? 0 : -1); |
| } |
| } |
| }; |
| |
| |
| /** |
| * Returns this Long with bits shifted to the right by the given amount, with |
| * the new top bits matching the current sign bit. |
| * @param {number} numBits The number of bits by which to shift. |
| * @return {!goog.math.Long} This shifted to the right by the given amount, with |
| * zeros placed into the new leading bits. |
| */ |
| goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { |
| numBits &= 63; |
| if (numBits == 0) { |
| return this; |
| } else { |
| var high = this.high_; |
| if (numBits < 32) { |
| var low = this.low_; |
| return goog.math.Long.fromBits( |
| (low >>> numBits) | (high << (32 - numBits)), |
| high >>> numBits); |
| } else if (numBits == 32) { |
| return goog.math.Long.fromBits(high, 0); |
| } else { |
| return goog.math.Long.fromBits(high >>> (numBits - 32), 0); |
| } |
| } |
| }; |
| |
| //======= begin jsbn ======= |
| |
| var navigator = { appName: 'Modern Browser' }; // polyfill a little |
| |
| // Copyright (c) 2005 Tom Wu |
| // All Rights Reserved. |
| // http://www-cs-students.stanford.edu/~tjw/jsbn/ |
| |
| /* |
| * Copyright (c) 2003-2005 Tom Wu |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
| * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
| * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
| * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| * In addition, the following condition applies: |
| * |
| * All redistributions must retain an intact copy of this copyright notice |
| * and disclaimer. |
| */ |
| |
| // Basic JavaScript BN library - subset useful for RSA encryption. |
| |
| // Bits per digit |
| var dbits; |
| |
| // JavaScript engine analysis |
| var canary = 0xdeadbeefcafe; |
| var j_lm = ((canary&0xffffff)==0xefcafe); |
| |
| // (public) Constructor |
| function BigInteger(a,b,c) { |
| if(a != null) |
| if("number" == typeof a) this.fromNumber(a,b,c); |
| else if(b == null && "string" != typeof a) this.fromString(a,256); |
| else this.fromString(a,b); |
| } |
| |
| // return new, unset BigInteger |
| function nbi() { return new BigInteger(null); } |
| |
| // am: Compute w_j += (x*this_i), propagate carries, |
| // c is initial carry, returns final carry. |
| // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
| // We need to select the fastest one that works in this environment. |
| |
| // am1: use a single mult and divide to get the high bits, |
| // max digit bits should be 26 because |
| // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
| function am1(i,x,w,j,c,n) { |
| while(--n >= 0) { |
| var v = x*this[i++]+w[j]+c; |
| c = Math.floor(v/0x4000000); |
| w[j++] = v&0x3ffffff; |
| } |
| return c; |
| } |
| // am2 avoids a big mult-and-extract completely. |
| // Max digit bits should be <= 30 because we do bitwise ops |
| // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
| function am2(i,x,w,j,c,n) { |
| var xl = x&0x7fff, xh = x>>15; |
| while(--n >= 0) { |
| var l = this[i]&0x7fff; |
| var h = this[i++]>>15; |
| var m = xh*l+h*xl; |
| l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); |
| c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
| w[j++] = l&0x3fffffff; |
| } |
| return c; |
| } |
| // Alternately, set max digit bits to 28 since some |
| // browsers slow down when dealing with 32-bit numbers. |
| function am3(i,x,w,j,c,n) { |
| var xl = x&0x3fff, xh = x>>14; |
| while(--n >= 0) { |
| var l = this[i]&0x3fff; |
| var h = this[i++]>>14; |
| var m = xh*l+h*xl; |
| l = xl*l+((m&0x3fff)<<14)+w[j]+c; |
| c = (l>>28)+(m>>14)+xh*h; |
| w[j++] = l&0xfffffff; |
| } |
| return c; |
| } |
| if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |
| BigInteger.prototype.am = am2; |
| dbits = 30; |
| } |
| else if(j_lm && (navigator.appName != "Netscape")) { |
| BigInteger.prototype.am = am1; |
| dbits = 26; |
| } |
| else { // Mozilla/Netscape seems to prefer am3 |
| BigInteger.prototype.am = am3; |
| dbits = 28; |
| } |
| |
| BigInteger.prototype.DB = dbits; |
| BigInteger.prototype.DM = ((1<<dbits)-1); |
| BigInteger.prototype.DV = (1<<dbits); |
| |
| var BI_FP = 52; |
| BigInteger.prototype.FV = Math.pow(2,BI_FP); |
| BigInteger.prototype.F1 = BI_FP-dbits; |
| BigInteger.prototype.F2 = 2*dbits-BI_FP; |
| |
| // Digit conversions |
| var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| var BI_RC = new Array(); |
| var rr,vv; |
| rr = "0".charCodeAt(0); |
| for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
| rr = "a".charCodeAt(0); |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| rr = "A".charCodeAt(0); |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| |
| function int2char(n) { return BI_RM.charAt(n); } |
| function intAt(s,i) { |
| var c = BI_RC[s.charCodeAt(i)]; |
| return (c==null)?-1:c; |
| } |
| |
| // (protected) copy this to r |
| function bnpCopyTo(r) { |
| for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; |
| r.t = this.t; |
| r.s = this.s; |
| } |
| |
| // (protected) set from integer value x, -DV <= x < DV |
| function bnpFromInt(x) { |
| this.t = 1; |
| this.s = (x<0)?-1:0; |
| if(x > 0) this[0] = x; |
| else if(x < -1) this[0] = x+DV; |
| else this.t = 0; |
| } |
| |
| // return bigint initialized to value |
| function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |
| |
| // (protected) set from string and radix |
| function bnpFromString(s,b) { |
| var k; |
| if(b == 16) k = 4; |
| else if(b == 8) k = 3; |
| else if(b == 256) k = 8; // byte array |
| else if(b == 2) k = 1; |
| else if(b == 32) k = 5; |
| else if(b == 4) k = 2; |
| else { this.fromRadix(s,b); return; } |
| this.t = 0; |
| this.s = 0; |
| var i = s.length, mi = false, sh = 0; |
| while(--i >= 0) { |
| var x = (k==8)?s[i]&0xff:intAt(s,i); |
| if(x < 0) { |
| if(s.charAt(i) == "-") mi = true; |
| continue; |
| } |
| mi = false; |
| if(sh == 0) |
| this[this.t++] = x; |
| else if(sh+k > this.DB) { |
| this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; |
| this[this.t++] = (x>>(this.DB-sh)); |
| } |
| else |
| this[this.t-1] |= x<<sh; |
| sh += k; |
| if(sh >= this.DB) sh -= this.DB; |
| } |
| if(k == 8 && (s[0]&0x80) != 0) { |
| this.s = -1; |
| if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; |
| } |
| this.clamp(); |
| if(mi) BigInteger.ZERO.subTo(this,this); |
| } |
| |
| // (protected) clamp off excess high words |
| function bnpClamp() { |
| var c = this.s&this.DM; |
| while(this.t > 0 && this[this.t-1] == c) --this.t; |
| } |
| |
| // (public) return string representation in given radix |
| function bnToString(b) { |
| if(this.s < 0) return "-"+this.negate().toString(b); |
| var k; |
| if(b == 16) k = 4; |
| else if(b == 8) k = 3; |
| else if(b == 2) k = 1; |
| else if(b == 32) k = 5; |
| else if(b == 4) k = 2; |
| else return this.toRadix(b); |
| var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
| var p = this.DB-(i*this.DB)%k; |
| if(i-- > 0) { |
| if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } |
| while(i >= 0) { |
| if(p < k) { |
| d = (this[i]&((1<<p)-1))<<(k-p); |
| d |= this[--i]>>(p+=this.DB-k); |
| } |
| else { |
| d = (this[i]>>(p-=k))&km; |
| if(p <= 0) { p += this.DB; --i; } |
| } |
| if(d > 0) m = true; |
| if(m) r += int2char(d); |
| } |
| } |
| return m?r:"0"; |
| } |
| |
| // (public) -this |
| function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |
| |
| // (public) |this| |
| function bnAbs() { return (this.s<0)?this.negate():this; } |
| |
| // (public) return + if this > a, - if this < a, 0 if equal |
| function bnCompareTo(a) { |
| var r = this.s-a.s; |
| if(r != 0) return r; |
| var i = this.t; |
| r = i-a.t; |
| if(r != 0) return (this.s<0)?-r:r; |
| while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; |
| return 0; |
| } |
| |
| // returns bit length of the integer x |
| function nbits(x) { |
| var r = 1, t; |
| if((t=x>>>16) != 0) { x = t; r += 16; } |
| if((t=x>>8) != 0) { x = t; r += 8; } |
| if((t=x>>4) != 0) { x = t; r += 4; } |
| if((t=x>>2) != 0) { x = t; r += 2; } |
| if((t=x>>1) != 0) { x = t; r += 1; } |
| return r; |
| } |
| |
| // (public) return the number of bits in "this" |
| function bnBitLength() { |
| if(this.t <= 0) return 0; |
| return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); |
| } |
| |
| // (protected) r = this << n*DB |
| function bnpDLShiftTo(n,r) { |
| var i; |
| for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; |
| for(i = n-1; i >= 0; --i) r[i] = 0; |
| r.t = this.t+n; |
| r.s = this.s; |
| } |
| |
| // (protected) r = this >> n*DB |
| function bnpDRShiftTo(n,r) { |
| for(var i = n; i < this.t; ++i) r[i-n] = this[i]; |
| r.t = Math.max(this.t-n,0); |
| r.s = this.s; |
| } |
| |
| // (protected) r = this << n |
| function bnpLShiftTo(n,r) { |
| var bs = n%this.DB; |
| var cbs = this.DB-bs; |
| var bm = (1<<cbs)-1; |
| var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; |
| for(i = this.t-1; i >= 0; --i) { |
| r[i+ds+1] = (this[i]>>cbs)|c; |
| c = (this[i]&bm)<<bs; |
| } |
| for(i = ds-1; i >= 0; --i) r[i] = 0; |
| r[ds] = c; |
| r.t = this.t+ds+1; |
| r.s = this.s; |
| r.clamp(); |
| } |
| |
| // (protected) r = this >> n |
| function bnpRShiftTo(n,r) { |
| r.s = this.s; |
| var ds = Math.floor(n/this.DB); |
| if(ds >= this.t) { r.t = 0; return; } |
| var bs = n%this.DB; |
| var cbs = this.DB-bs; |
| var bm = (1<<bs)-1; |
| r[0] = this[ds]>>bs; |
| for(var i = ds+1; i < this.t; ++i) { |
| r[i-ds-1] |= (this[i]&bm)<<cbs; |
| r[i-ds] = this[i]>>bs; |
| } |
| if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; |
| r.t = this.t-ds; |
| r.clamp(); |
| } |
| |
| // (protected) r = this - a |
| function bnpSubTo(a,r) { |
| var i = 0, c = 0, m = Math.min(a.t,this.t); |
| while(i < m) { |
| c += this[i]-a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| if(a.t < this.t) { |
| c -= a.s; |
| while(i < this.t) { |
| c += this[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c += this.s; |
| } |
| else { |
| c += this.s; |
| while(i < a.t) { |
| c -= a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c -= a.s; |
| } |
| r.s = (c<0)?-1:0; |
| if(c < -1) r[i++] = this.DV+c; |
| else if(c > 0) r[i++] = c; |
| r.t = i; |
| r.clamp(); |
| } |
| |
| // (protected) r = this * a, r != this,a (HAC 14.12) |
| // "this" should be the larger one if appropriate. |
| function bnpMultiplyTo(a,r) { |
| var x = this.abs(), y = a.abs(); |
| var i = x.t; |
| r.t = i+y.t; |
| while(--i >= 0) r[i] = 0; |
| for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); |
| r.s = 0; |
| r.clamp(); |
| if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |
| } |
| |
| // (protected) r = this^2, r != this (HAC 14.16) |
| function bnpSquareTo(r) { |
| var x = this.abs(); |
| var i = r.t = 2*x.t; |
| while(--i >= 0) r[i] = 0; |
| for(i = 0; i < x.t-1; ++i) { |
| var c = x.am(i,x[i],r,2*i,0,1); |
| if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { |
| r[i+x.t] -= x.DV; |
| r[i+x.t+1] = 1; |
| } |
| } |
| if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); |
| r.s = 0; |
| r.clamp(); |
| } |
| |
| // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
| // r != q, this != m. q or r may be null. |
| function bnpDivRemTo(m,q,r) { |
| var pm = m.abs(); |
| if(pm.t <= 0) return; |
| var pt = this.abs(); |
| if(pt.t < pm.t) { |
| if(q != null) q.fromInt(0); |
| if(r != null) this.copyTo(r); |
| return; |
| } |
| if(r == null) r = nbi(); |
| var y = nbi(), ts = this.s, ms = m.s; |
| var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus |
| if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } |
| else { pm.copyTo(y); pt.copyTo(r); } |
| var ys = y.t; |
| var y0 = y[ys-1]; |
| if(y0 == 0) return; |
| var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); |
| var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; |
| var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
| y.dlShiftTo(j,t); |
| if(r.compareTo(t) >= 0) { |
| r[r.t++] = 1; |
| r.subTo(t,r); |
| } |
| BigInteger.ONE.dlShiftTo(ys,t); |
| t.subTo(y,y); // "negative" y so we can replace sub with am later |
| while(y.t < ys) y[y.t++] = 0; |
| while(--j >= 0) { |
| // Estimate quotient digit |
| var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); |
| if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
| y.dlShiftTo(j,t); |
| r.subTo(t,r); |
| while(r[i] < --qd) r.subTo(t,r); |
| } |
| } |
| if(q != null) { |
| r.drShiftTo(ys,q); |
| if(ts != ms) BigInteger.ZERO.subTo(q,q); |
| } |
| r.t = ys; |
| r.clamp(); |
| if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder |
| if(ts < 0) BigInteger.ZERO.subTo(r,r); |
| } |
| |
| // (public) this mod a |
| function bnMod(a) { |
| var r = nbi(); |
| this.abs().divRemTo(a,null,r); |
| if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |
| return r; |
| } |
| |
| // Modular reduction using "classic" algorithm |
| function Classic(m) { this.m = m; } |
| function cConvert(x) { |
| if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
| else return x; |
| } |
| function cRevert(x) { return x; } |
| function cReduce(x) { x.divRemTo(this.m,null,x); } |
| function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| |
| Classic.prototype.convert = cConvert; |
| Classic.prototype.revert = cRevert; |
| Classic.prototype.reduce = cReduce; |
| Classic.prototype.mulTo = cMulTo; |
| Classic.prototype.sqrTo = cSqrTo; |
| |
| // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
| // justification: |
| // xy == 1 (mod m) |
| // xy = 1+km |
| // xy(2-xy) = (1+km)(1-km) |
| // x[y(2-xy)] = 1-k^2m^2 |
| // x[y(2-xy)] == 1 (mod m^2) |
| // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
| // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
| // JS multiply "overflows" differently from C/C++, so care is needed here. |
| function bnpInvDigit() { |
| if(this.t < 1) return 0; |
| var x = this[0]; |
| if((x&1) == 0) return 0; |
| var y = x&3; // y == 1/x mod 2^2 |
| y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
| y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
| y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
| // last step - calculate inverse mod DV directly; |
| // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
| y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits |
| // we really want the negative inverse, and -DV < y < DV |
| return (y>0)?this.DV-y:-y; |
| } |
| |
| // Montgomery reduction |
| function Montgomery(m) { |
| this.m = m; |
| this.mp = m.invDigit(); |
| this.mpl = this.mp&0x7fff; |
| this.mph = this.mp>>15; |
| this.um = (1<<(m.DB-15))-1; |
| this.mt2 = 2*m.t; |
| } |
| |
| // xR mod m |
| function montConvert(x) { |
| var r = nbi(); |
| x.abs().dlShiftTo(this.m.t,r); |
| r.divRemTo(this.m,null,r); |
| if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |
| return r; |
| } |
| |
| // x/R mod m |
| function montRevert(x) { |
| var r = nbi(); |
| x.copyTo(r); |
| this.reduce(r); |
| return r; |
| } |
| |
| // x = x/R mod m (HAC 14.32) |
| function montReduce(x) { |
| while(x.t <= this.mt2) // pad x so am has enough room later |
| x[x.t++] = 0; |
| for(var i = 0; i < this.m.t; ++i) { |
| // faster way of calculating u0 = x[i]*mp mod DV |
| var j = x[i]&0x7fff; |
| var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; |
| // use am to combine the multiply-shift-add into one call |
| j = i+this.m.t; |
| x[j] += this.m.am(0,u0,x,i,0,this.m.t); |
| // propagate carry |
| while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } |
| } |
| x.clamp(); |
| x.drShiftTo(this.m.t,x); |
| if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
| } |
| |
| // r = "x^2/R mod m"; x != r |
| function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| |
| // r = "xy/R mod m"; x,y != r |
| function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| |
| Montgomery.prototype.convert = montConvert; |
| Montgomery.prototype.revert = montRevert; |
| Montgomery.prototype.reduce = montReduce; |
| Montgomery.prototype.mulTo = montMulTo; |
| Montgomery.prototype.sqrTo = montSqrTo; |
| |
| // (protected) true iff this is even |
| function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } |
| |
| // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
| function bnpExp(e,z) { |
| if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
| var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
| g.copyTo(r); |
| while(--i >= 0) { |
| z.sqrTo(r,r2); |
| if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
| else { var t = r; r = r2; r2 = t; } |
| } |
| return z.revert(r); |
| } |
| |
| // (public) this^e % m, 0 <= e < 2^32 |
| function bnModPowInt(e,m) { |
| var z; |
| if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |
| return this.exp(e,z); |
| } |
| |
| // protected |
| BigInteger.prototype.copyTo = bnpCopyTo; |
| BigInteger.prototype.fromInt = bnpFromInt; |
| BigInteger.prototype.fromString = bnpFromString; |
| BigInteger.prototype.clamp = bnpClamp; |
| BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |
| BigInteger.prototype.drShiftTo = bnpDRShiftTo; |
| BigInteger.prototype.lShiftTo = bnpLShiftTo; |
| BigInteger.prototype.rShiftTo = bnpRShiftTo; |
| BigInteger.prototype.subTo = bnpSubTo; |
| BigInteger.prototype.multiplyTo = bnpMultiplyTo; |
| BigInteger.prototype.squareTo = bnpSquareTo; |
| BigInteger.prototype.divRemTo = bnpDivRemTo; |
| BigInteger.prototype.invDigit = bnpInvDigit; |
| BigInteger.prototype.isEven = bnpIsEven; |
| BigInteger.prototype.exp = bnpExp; |
| |
| // public |
| BigInteger.prototype.toString = bnToString; |
| BigInteger.prototype.negate = bnNegate; |
| BigInteger.prototype.abs = bnAbs; |
| BigInteger.prototype.compareTo = bnCompareTo; |
| BigInteger.prototype.bitLength = bnBitLength; |
| BigInteger.prototype.mod = bnMod; |
| BigInteger.prototype.modPowInt = bnModPowInt; |
| |
| // "constants" |
| BigInteger.ZERO = nbv(0); |
| BigInteger.ONE = nbv(1); |
| |
| // jsbn2 stuff |
| |
| // (protected) convert from radix string |
| function bnpFromRadix(s,b) { |
| this.fromInt(0); |
| if(b == null) b = 10; |
| var cs = this.chunkSize(b); |
| var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
| for(var i = 0; i < s.length; ++i) { |
| var x = intAt(s,i); |
| if(x < 0) { |
| if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
| continue; |
| } |
| w = b*w+x; |
| if(++j >= cs) { |
| this.dMultiply(d); |
| this.dAddOffset(w,0); |
| j = 0; |
| w = 0; |
| } |
| } |
| if(j > 0) { |
| this.dMultiply(Math.pow(b,j)); |
| this.dAddOffset(w,0); |
| } |
| if(mi) BigInteger.ZERO.subTo(this,this); |
| } |
| |
| // (protected) return x s.t. r^x < DV |
| function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } |
| |
| // (public) 0 if this == 0, 1 if this > 0 |
| function bnSigNum() { |
| if(this.s < 0) return -1; |
| else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; |
| else return 1; |
| } |
| |
| // (protected) this *= n, this >= 0, 1 < n < DV |
| function bnpDMultiply(n) { |
| this[this.t] = this.am(0,n-1,this,0,0,this.t); |
| ++this.t; |
| this.clamp(); |
| } |
| |
| // (protected) this += n << w words, this >= 0 |
| function bnpDAddOffset(n,w) { |
| if(n == 0) return; |
| while(this.t <= w) this[this.t++] = 0; |
| this[w] += n; |
| while(this[w] >= this.DV) { |
| this[w] -= this.DV; |
| if(++w >= this.t) this[this.t++] = 0; |
| ++this[w]; |
| } |
| } |
| |
| // (protected) convert to radix string |
| function bnpToRadix(b) { |
| if(b == null) b = 10; |
| if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
| var cs = this.chunkSize(b); |
| var a = Math.pow(b,cs); |
| var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
| this.divRemTo(d,y,z); |
| while(y.signum() > 0) { |
| r = (a+z.intValue()).toString(b).substr(1) + r; |
| y.divRemTo(d,y,z); |
| } |
| return z.intValue().toString(b) + r; |
| } |
| |
| // (public) return value as integer |
| function bnIntValue() { |
| if(this.s < 0) { |
| if(this.t == 1) return this[0]-this.DV; |
| else if(this.t == 0) return -1; |
| } |
| else if(this.t == 1) return this[0]; |
| else if(this.t == 0) return 0; |
| // assumes 16 < DB < 32 |
| return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; |
| } |
| |
| // (protected) r = this + a |
| function bnpAddTo(a,r) { |
| var i = 0, c = 0, m = Math.min(a.t,this.t); |
| while(i < m) { |
| c += this[i]+a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| if(a.t < this.t) { |
| c += a.s; |
| while(i < this.t) { |
| c += this[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c += this.s; |
| } |
| else { |
| c += this.s; |
| while(i < a.t) { |
| c += a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c += a.s; |
| } |
| r.s = (c<0)?-1:0; |
| if(c > 0) r[i++] = c; |
| else if(c < -1) r[i++] = this.DV+c; |
| r.t = i; |
| r.clamp(); |
| } |
| |
| BigInteger.prototype.fromRadix = bnpFromRadix; |
| BigInteger.prototype.chunkSize = bnpChunkSize; |
| BigInteger.prototype.signum = bnSigNum; |
| BigInteger.prototype.dMultiply = bnpDMultiply; |
| BigInteger.prototype.dAddOffset = bnpDAddOffset; |
| BigInteger.prototype.toRadix = bnpToRadix; |
| BigInteger.prototype.intValue = bnIntValue; |
| BigInteger.prototype.addTo = bnpAddTo; |
| |
| //======= end jsbn ======= |
| |
| // Emscripten wrapper |
| var Wrapper = { |
| abs: function(l, h) { |
| var x = new goog.math.Long(l, h); |
| var ret; |
| if (x.isNegative()) { |
| ret = x.negate(); |
| } else { |
| ret = x; |
| } |
| HEAP32[tempDoublePtr>>2] = ret.low_; |
| HEAP32[tempDoublePtr+4>>2] = ret.high_; |
| }, |
| ensureTemps: function() { |
| if (Wrapper.ensuredTemps) return; |
| Wrapper.ensuredTemps = true; |
| Wrapper.two32 = new BigInteger(); |
| Wrapper.two32.fromString('4294967296', 10); |
| Wrapper.two64 = new BigInteger(); |
| Wrapper.two64.fromString('18446744073709551616', 10); |
| Wrapper.temp1 = new BigInteger(); |
| Wrapper.temp2 = new BigInteger(); |
| }, |
| lh2bignum: function(l, h) { |
| var a = new BigInteger(); |
| a.fromString(h.toString(), 10); |
| var b = new BigInteger(); |
| a.multiplyTo(Wrapper.two32, b); |
| var c = new BigInteger(); |
| c.fromString(l.toString(), 10); |
| var d = new BigInteger(); |
| c.addTo(b, d); |
| return d; |
| }, |
| stringify: function(l, h, unsigned) { |
| var ret = new goog.math.Long(l, h).toString(); |
| if (unsigned && ret[0] == '-') { |
| // unsign slowly using jsbn bignums |
| Wrapper.ensureTemps(); |
| var bignum = new BigInteger(); |
| bignum.fromString(ret, 10); |
| ret = new BigInteger(); |
| Wrapper.two64.addTo(bignum, ret); |
| ret = ret.toString(10); |
| } |
| return ret; |
| }, |
| fromString: function(str, base, min, max, unsigned) { |
| Wrapper.ensureTemps(); |
| var bignum = new BigInteger(); |
| bignum.fromString(str, base); |
| var bigmin = new BigInteger(); |
| bigmin.fromString(min, 10); |
| var bigmax = new BigInteger(); |
| bigmax.fromString(max, 10); |
| if (unsigned && bignum.compareTo(BigInteger.ZERO) < 0) { |
| var temp = new BigInteger(); |
| bignum.addTo(Wrapper.two64, temp); |
| bignum = temp; |
| } |
| var error = false; |
| if (bignum.compareTo(bigmin) < 0) { |
| bignum = bigmin; |
| error = true; |
| } else if (bignum.compareTo(bigmax) > 0) { |
| bignum = bigmax; |
| error = true; |
| } |
| var ret = goog.math.Long.fromString(bignum.toString()); // min-max checks should have clamped this to a range goog.math.Long can handle well |
| HEAP32[tempDoublePtr>>2] = ret.low_; |
| HEAP32[tempDoublePtr+4>>2] = ret.high_; |
| if (error) throw 'range error'; |
| } |
| }; |
| return Wrapper; |
| })(); |
| |
| //======= end closure i64 code ======= |
| |