| // SPDX-License-Identifier: Apache-2.0 |
| // ---------------------------------------------------------------------------- |
| // Copyright 2011-2021 Arm Limited |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| // use this file except in compliance with the License. You may obtain a copy |
| // of the License at: |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| // License for the specific language governing permissions and limitations |
| // under the License. |
| // ---------------------------------------------------------------------------- |
| |
| #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| |
| /** |
| * @brief Functions for angular-sum algorithm for weight alignment. |
| * |
| * This algorithm works as follows: |
| * - we compute a complex number P as (cos s*i, sin s*i) for each weight, |
| * where i is the input value and s is a scaling factor based on the spacing between the weights. |
| * - we then add together complex numbers for all the weights. |
| * - we then compute the length and angle of the resulting sum. |
| * |
| * This should produce the following results: |
| * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs |
| * - even distribution results in a vector of length 0. |
| * - all samples identical results in perfect alignment for every scaling. |
| * |
| * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This |
| * should then result in some scalings standing out as having particularly good alignment factors; |
| * we can use this to produce a set of candidate scale/shift values for various quantization levels; |
| * we should then actually try them and see what happens. |
| */ |
| |
| #include "astcenc_internal.h" |
| #include "astcenc_vecmathlib.h" |
| |
| #include <stdio.h> |
| #include <cassert> |
| #include <cstring> |
| |
| |
| static constexpr unsigned int ANGULAR_STEPS { 40 }; |
| |
| // Store a reduced sin/cos table for 64 possible weight values; this causes slight quality loss |
| // compared to using sin() and cos() directly. Must be 2^N. |
| static constexpr unsigned int SINCOS_STEPS { 64 }; |
| |
| static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, |
| "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH"); |
| |
| static unsigned int max_angular_steps_needed_for_quant_level[13]; |
| |
| // The next-to-last entry is supposed to have the value 33. This because the 32-weight mode leaves a |
| // double-sized hole in the middle of the weight space, so we are better off matching 33 weights. |
| static const unsigned int quantization_steps_for_level[13] = { |
| 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36 |
| }; |
| |
| alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| |
| /* See header for documentation. */ |
| void prepare_angular_tables() |
| { |
| unsigned int max_angular_steps_needed_for_quant_steps[ANGULAR_STEPS + 1]; |
| for (unsigned int i = 0; i < ANGULAR_STEPS; i++) |
| { |
| float angle_step = (float)(i + 1); |
| |
| for (unsigned int j = 0; j < SINCOS_STEPS; j++) |
| { |
| sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| } |
| |
| max_angular_steps_needed_for_quant_steps[i + 1] = astc::min(i + 1, ANGULAR_STEPS - 1); |
| } |
| |
| for (unsigned int i = 0; i < 13; i++) |
| { |
| max_angular_steps_needed_for_quant_level[i] = max_angular_steps_needed_for_quant_steps[quantization_steps_for_level[i]]; |
| } |
| } |
| |
| /** |
| * @brief Compute the angular alignment factors and offsets. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_quant_uvalue The decimated and quantized weight values. |
| * @param dec_weight_quant_sig The significance of each weight. |
| * @param max_angular_steps The maximum number of steps to be tested. |
| * @param[out] offsets The output angular offsets array. |
| */ |
| static void compute_angular_offsets( |
| unsigned int weight_count, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| unsigned int max_angular_steps, |
| float* offsets |
| ) { |
| promise(weight_count > 0); |
| promise(max_angular_steps > 0); |
| |
| alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS] { 0 }; |
| |
| // Precompute isample; arrays are always allocated 64 elements long |
| for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| { |
| // Add 2^23 and interpreting bits extracts round-to-nearest int |
| vfloat sample = loada(dec_weight_quant_uvalue + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f); |
| vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1)); |
| storea(isample, isamplev + i); |
| } |
| |
| // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max |
| vfloat mult = vfloat(1.0f / (2.0f * astc::PI)); |
| |
| for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) |
| { |
| vfloat anglesum_x = vfloat::zero(); |
| vfloat anglesum_y = vfloat::zero(); |
| |
| for (unsigned int j = 0; j < weight_count; j++) |
| { |
| int isample = isamplev[j]; |
| vfloat sample_weightv(dec_weight_quant_sig[j]); |
| anglesum_x += loada(cos_table[isample] + i) * sample_weightv; |
| anglesum_y += loada(sin_table[isample] + i) * sample_weightv; |
| } |
| |
| vfloat angle = atan2(anglesum_y, anglesum_x); |
| vfloat ofs = angle * mult; |
| storea(ofs, offsets + i); |
| } |
| } |
| |
| /** |
| * @brief For a given step size compute the lowest and highest weight. |
| * |
| * Compute the lowest and highest weight that results from quantizing using the given stepsize and |
| * offset, and then compute the resulting error. The cut errors indicate the error that results from |
| * forcing samples that should have had one weight value one step up or down. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_quant_uvalue The decimated and quantized weight values. |
| * @param dec_weight_quant_sig The significance of each weight. |
| * @param max_angular_steps The maximum number of steps to be tested. |
| * @param max_quant_steps The maximum quantization level to be tested. |
| * @param offsets The angular offsets array. |
| * @param[out] lowest_weight Per angular step, the lowest weight. |
| * @param[out] weight_span Per angular step, the span between lowest and highest weight. |
| * @param[out] error Per angular step, the error. |
| * @param[out] cut_low_weight_error Per angular step, the low weight cut error. |
| * @param[out] cut_high_weight_error Per angular step, the high weight cut error. |
| */ |
| static void compute_lowest_and_highest_weight( |
| unsigned int weight_count, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| unsigned int max_angular_steps, |
| unsigned int max_quant_steps, |
| const float* offsets, |
| int* lowest_weight, |
| int* weight_span, |
| float* error, |
| float* cut_low_weight_error, |
| float* cut_high_weight_error |
| ) { |
| promise(weight_count > 0); |
| promise(max_angular_steps > 0); |
| |
| vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f); |
| |
| // Arrays are ANGULAR_STEPS long, so always safe to run full vectors |
| for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH) |
| { |
| vint minidx(128); |
| vint maxidx(-128); |
| vfloat errval = vfloat::zero(); |
| vfloat cut_low_weight_err = vfloat::zero(); |
| vfloat cut_high_weight_err = vfloat::zero(); |
| vfloat offset = loada(&offsets[sp]); |
| |
| for (unsigned int j = 0; j < weight_count; ++j) |
| { |
| vfloat wt = load1(&dec_weight_quant_sig[j]); |
| vfloat sval = load1(&dec_weight_quant_uvalue[j]) * rcp_stepsize - offset; |
| vfloat svalrte = round(sval); |
| vint idxv = float_to_int(svalrte); |
| vfloat dif = sval - svalrte; |
| vfloat dwt = dif * wt; |
| errval += dwt * dif; |
| |
| // Reset tracker on min hit |
| vmask mask = idxv < minidx; |
| minidx = select(minidx, idxv, mask); |
| cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask); |
| |
| // Accumulate on min hit |
| mask = idxv == minidx; |
| vfloat accum = cut_low_weight_err + wt - vfloat(2.0f) * dwt; |
| cut_low_weight_err = select(cut_low_weight_err, accum, mask); |
| |
| // Reset tracker on max hit |
| mask = idxv > maxidx; |
| maxidx = select(maxidx, idxv, mask); |
| cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask); |
| |
| // Accumulate on max hit |
| mask = idxv == maxidx; |
| accum = cut_high_weight_err + wt + vfloat(2.0f) * dwt; |
| cut_high_weight_err = select(cut_high_weight_err, accum, mask); |
| } |
| |
| // Write out min weight and weight span; clamp span to a usable range |
| vint span = maxidx - minidx + vint(1); |
| span = min(span, vint(max_quant_steps + 3)); |
| span = max(span, vint(2)); |
| storea(minidx, &lowest_weight[sp]); |
| storea(span, &weight_span[sp]); |
| |
| // The cut_(lowest/highest)_weight_error indicate the error that results from forcing |
| // samples that should have had the weight value one step (up/down). |
| vfloat ssize = 1.0f / rcp_stepsize; |
| vfloat errscale = ssize * ssize; |
| storea(errval * errscale, &error[sp]); |
| storea(cut_low_weight_err * errscale, &cut_low_weight_error[sp]); |
| storea(cut_high_weight_err * errscale, &cut_high_weight_error[sp]); |
| |
| rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH); |
| } |
| } |
| |
| /** |
| * @brief The main function for the angular algorithm. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_quant_uvalue The decimated and quantized weight value. |
| * @param dec_weight_quant_sig The significance of each weight. |
| * @param max_quant_level The maximum quantization level to be tested. |
| * @param[out] low_value Per angular step, the lowest weight value. |
| * @param[out] high_value Per angular step, the highest weight value. |
| */ |
| static void compute_angular_endpoints_for_quant_levels( |
| unsigned int weight_count, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| unsigned int max_quant_level, |
| float low_value[12], |
| float high_value[12] |
| ) { |
| unsigned int max_quant_steps = quantization_steps_for_level[max_quant_level]; |
| |
| alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS]; |
| unsigned int max_angular_steps = max_angular_steps_needed_for_quant_level[max_quant_level]; |
| compute_angular_offsets(weight_count, dec_weight_quant_uvalue, dec_weight_quant_sig, |
| max_angular_steps, angular_offsets); |
| |
| alignas(ASTCENC_VECALIGN) int32_t lowest_weight[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS]; |
| |
| compute_lowest_and_highest_weight(weight_count, dec_weight_quant_uvalue, dec_weight_quant_sig, |
| max_angular_steps, max_quant_steps, |
| angular_offsets, lowest_weight, weight_span, error, |
| cut_low_weight_error, cut_high_weight_error); |
| |
| // For each quantization level, find the best error terms. Use packed vectors so data-dependent |
| // branches can become selects. This involves some integer to float casts, but the values are |
| // small enough so they never round the wrong way. |
| vfloat4 best_results[40]; |
| |
| // Initialize the array to some safe defaults |
| promise(max_quant_steps > 0); |
| // TODO: Why the + 4 in the current code? |
| for (unsigned int i = 0; i < (max_quant_steps + 4); i++) |
| { |
| // Lane<0> = Best error |
| // Lane<1> = Best scale; -1 indicates no solution found |
| // Lane<2> = Cut low weight |
| best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f); |
| } |
| |
| promise(max_angular_steps > 0); |
| for (unsigned int i = 0; i < max_angular_steps; i++) |
| { |
| int idx_span = weight_span[i]; |
| float error_cut_low = error[i] + cut_low_weight_error[i]; |
| float error_cut_high = error[i] + cut_high_weight_error[i]; |
| float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i]; |
| |
| // Check best error against record N |
| vfloat4 best_result = best_results[idx_span]; |
| vfloat4 new_result = vfloat4(error[i], (float)i, 0.0f, 0.0f); |
| vmask4 mask1(best_result.lane<0>() > error[i]); |
| best_results[idx_span] = select(best_result, new_result, mask1); |
| |
| // Check best error against record N-1 with either cut low or cut high |
| best_result = best_results[idx_span - 1]; |
| |
| new_result = vfloat4(error_cut_low, (float)i, 1.0f, 0.0f); |
| vmask4 mask2(best_result.lane<0>() > error_cut_low); |
| best_result = select(best_result, new_result, mask2); |
| |
| new_result = vfloat4(error_cut_high, (float)i, 0.0f, 0.0f); |
| vmask4 mask3(best_result.lane<0>() > error_cut_high); |
| best_results[idx_span - 1] = select(best_result, new_result, mask3); |
| |
| // Check best error against record N-2 with both cut low and high |
| best_result = best_results[idx_span - 2]; |
| new_result = vfloat4(error_cut_low_high, (float)i, 1.0f, 0.0f); |
| vmask4 mask4(best_result.lane<0>() > error_cut_low_high); |
| best_results[idx_span - 2] = select(best_result, new_result, mask4); |
| } |
| |
| for (unsigned int i = 0; i <= max_quant_level; i++) |
| { |
| unsigned int q = quantization_steps_for_level[i]; |
| int bsi = (int)best_results[q].lane<1>(); |
| |
| // Did we find anything? |
| #if !defined(NDEBUG) |
| if (bsi < 0) |
| { |
| printf("WARNING: Unable to find encoding within specified error limit\n"); |
| } |
| #endif |
| |
| bsi = astc::max(0, bsi); |
| |
| float stepsize = 1.0f / (1.0f + (float)bsi); |
| int lwi = lowest_weight[bsi] + (int)best_results[q].lane<2>(); |
| int hwi = lwi + q - 1; |
| |
| float offset = angular_offsets[bsi] * stepsize; |
| low_value[i] = offset + static_cast<float>(lwi) * stepsize; |
| high_value[i] = offset + static_cast<float>(hwi) * stepsize; |
| } |
| } |
| |
| /** |
| * @brief For a given step size compute the lowest and highest weight, variant for low weight count. |
| * |
| * Compute the lowest and highest weight that results from quantizing using the given stepsize and |
| * offset, and then compute the resulting error. The cut errors indicate the error that results from |
| * forcing samples that should have had one weight value one step up or down. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_quant_uvalue The decimated and quantized weight values. |
| * @param dec_weight_quant_sig The significance of each weight. |
| * @param max_angular_steps The maximum number of steps to be tested. |
| * @param max_quant_steps The maximum quantization level to be tested. |
| * @param offsets The angular offsets array. |
| * @param[out] lowest_weight Per angular step, the lowest weight. |
| * @param[out] weight_span Per angular step, the span between lowest and highest weight. |
| * @param[out] error Per angular step, the error. |
| */ |
| static void compute_lowest_and_highest_weight_lwc( |
| unsigned int weight_count, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| unsigned int max_angular_steps, |
| unsigned int max_quant_steps, |
| const float* offsets, |
| int* lowest_weight, |
| int* weight_span, |
| float* error |
| ) { |
| promise(weight_count > 0); |
| promise(max_angular_steps > 0); |
| |
| vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f); |
| |
| // Arrays are ANGULAR_STEPS long, so always safe to run full vectors |
| for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH) |
| { |
| vint minidx(128); |
| vint maxidx(-128); |
| vfloat errval = vfloat::zero(); |
| vfloat offset = loada(&offsets[sp]); |
| |
| for (unsigned int j = 0; j < weight_count; ++j) |
| { |
| vfloat wt = load1(&dec_weight_quant_sig[j]); |
| vfloat sval = load1(&dec_weight_quant_uvalue[j]) * rcp_stepsize - offset; |
| vfloat svalrte = round(sval); |
| vint idxv = float_to_int(svalrte); |
| vfloat dif = sval - svalrte; |
| vfloat dwt = dif * wt; |
| errval += dwt * dif; |
| |
| // Reset tracker on min hit |
| vmask mask = idxv < minidx; |
| minidx = select(minidx, idxv, mask); |
| |
| // Reset tracker on max hit |
| mask = idxv > maxidx; |
| maxidx = select(maxidx, idxv, mask); |
| } |
| |
| // Write out min weight and weight span; clamp span to a usable range |
| vint span = maxidx - minidx + vint(1); |
| span = min(span, vint(max_quant_steps + 3)); |
| span = max(span, vint(2)); |
| storea(minidx, &lowest_weight[sp]); |
| storea(span, &weight_span[sp]); |
| |
| // The cut_(lowest/highest)_weight_error indicate the error that results from forcing |
| // samples that should have had the weight value one step (up/down). |
| vfloat ssize = 1.0f / rcp_stepsize; |
| vfloat errscale = ssize * ssize; |
| storea(errval * errscale, &error[sp]); |
| |
| rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH); |
| } |
| } |
| |
| /** |
| * @brief The main function for the angular algorithm, variant for low weight count. |
| * |
| * @param weight_count The number of (decimated) weights. |
| * @param dec_weight_quant_uvalue The decimated and quantized weight value. |
| * @param dec_weight_quant_sig The significance of each weight. |
| * @param max_quant_level The maximum quantization level to be tested. |
| * @param[out] low_value Per angular step, the lowest weight value. |
| * @param[out] high_value Per angular step, the highest weight value. |
| */ |
| static void compute_angular_endpoints_for_quant_levels_lwc( |
| unsigned int weight_count, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| unsigned int max_quant_level, |
| float low_value[12], |
| float high_value[12] |
| ) { |
| unsigned int max_quant_steps = quantization_steps_for_level[max_quant_level]; |
| unsigned int max_angular_steps = max_angular_steps_needed_for_quant_level[max_quant_level]; |
| |
| alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) int32_t lowest_weight[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS]; |
| alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS]; |
| |
| compute_angular_offsets(weight_count, dec_weight_quant_uvalue, dec_weight_quant_sig, |
| max_angular_steps, angular_offsets); |
| |
| |
| compute_lowest_and_highest_weight_lwc(weight_count, dec_weight_quant_uvalue, dec_weight_quant_sig, |
| max_angular_steps, max_quant_steps, |
| angular_offsets, lowest_weight, weight_span, error); |
| |
| // For each quantization level, find the best error terms. Use packed vectors so data-dependent |
| // branches can become selects. This involves some integer to float casts, but the values are |
| // small enough so they never round the wrong way. |
| float best_error[ANGULAR_STEPS]; |
| int best_index[ANGULAR_STEPS]; |
| |
| // Initialize the array to some safe defaults |
| promise(max_quant_steps > 0); |
| // TODO: Why the + 4 in the current code? |
| for (unsigned int i = 0; i < (max_quant_steps + 4); i++) |
| { |
| best_error[i] = ERROR_CALC_DEFAULT; |
| best_index[i] = -1; |
| } |
| |
| promise(max_angular_steps > 0); |
| for (unsigned int i = 0; i < max_angular_steps; i++) |
| { |
| int idx_span = weight_span[i]; |
| |
| // Check best error against record N |
| float current_best = best_error[idx_span]; |
| if (error[i] < current_best) |
| { |
| best_error[idx_span] = error[i]; |
| best_index[idx_span] = i; |
| } |
| } |
| |
| for (unsigned int i = 0; i <= max_quant_level; i++) |
| { |
| unsigned int q = quantization_steps_for_level[i]; |
| int bsi = best_index[q]; |
| |
| // Did we find anything? |
| #if !defined(NDEBUG) |
| if (bsi < 0) |
| { |
| printf("WARNING: Unable to find encoding within specified error limit\n"); |
| } |
| #endif |
| |
| bsi = astc::max(0, bsi); |
| |
| int lwi = lowest_weight[bsi]; |
| int hwi = lwi + q - 1; |
| |
| low_value[i] = (angular_offsets[bsi] + static_cast<float>(lwi)) / (1.0f + (float)bsi); |
| high_value[i] = (angular_offsets[bsi] + static_cast<float>(hwi)) / (1.0f + (float)bsi); |
| } |
| } |
| |
| /* See header for documentation. */ |
| void compute_angular_endpoints_1plane( |
| unsigned int tune_low_weight_limit, |
| bool only_always, |
| const block_size_descriptor& bsd, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| float low_value[WEIGHTS_MAX_BLOCK_MODES], |
| float high_value[WEIGHTS_MAX_BLOCK_MODES] |
| ) { |
| float low_values[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| float high_values[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| |
| promise(bsd.decimation_mode_count > 0); |
| for (unsigned int i = 0; i < bsd.decimation_mode_count; i++) |
| { |
| const decimation_mode& dm = bsd.decimation_modes[i]; |
| if (dm.maxprec_1plane < 0 || (only_always && !dm.percentile_always) || !dm.percentile_hit) |
| { |
| continue; |
| } |
| |
| unsigned int weight_count = bsd.decimation_tables[i]->weight_count; |
| |
| if (weight_count < tune_low_weight_limit) |
| { |
| compute_angular_endpoints_for_quant_levels_lwc( |
| weight_count, |
| dec_weight_quant_uvalue + i * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + i * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_1plane, low_values[i], high_values[i]); |
| } |
| else |
| { |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_quant_uvalue + i * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + i * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_1plane, low_values[i], high_values[i]); |
| } |
| } |
| |
| promise(bsd.block_mode_count > 0); |
| for (unsigned int i = 0; i < bsd.block_mode_count; ++i) |
| { |
| const block_mode& bm = bsd.block_modes[i]; |
| if (bm.is_dual_plane || (only_always && !bm.percentile_always) || !bm.percentile_hit) |
| { |
| continue; |
| } |
| |
| unsigned int quant_mode = bm.quant_mode; |
| unsigned int decim_mode = bm.decimation_mode; |
| |
| low_value[i] = low_values[decim_mode][quant_mode]; |
| high_value[i] = high_values[decim_mode][quant_mode]; |
| } |
| } |
| |
| /* See header for documentation. */ |
| void compute_angular_endpoints_2planes( |
| unsigned int tune_low_weight_limit, |
| const block_size_descriptor& bsd, |
| const float* dec_weight_quant_uvalue, |
| const float* dec_weight_quant_sig, |
| float low_value1[WEIGHTS_MAX_BLOCK_MODES], |
| float high_value1[WEIGHTS_MAX_BLOCK_MODES], |
| float low_value2[WEIGHTS_MAX_BLOCK_MODES], |
| float high_value2[WEIGHTS_MAX_BLOCK_MODES] |
| ) { |
| float low_values1[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| float high_values1[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| float low_values2[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| float high_values2[WEIGHTS_MAX_DECIMATION_MODES][12]; |
| |
| promise(bsd.decimation_mode_count > 0); |
| for (unsigned int i = 0; i < bsd.decimation_mode_count; i++) |
| { |
| const decimation_mode& dm = bsd.decimation_modes[i]; |
| if (dm.maxprec_2planes < 0 || !dm.percentile_hit) |
| { |
| continue; |
| } |
| |
| unsigned int weight_count = bsd.decimation_tables[i]->weight_count; |
| |
| if (weight_count < tune_low_weight_limit) |
| { |
| compute_angular_endpoints_for_quant_levels_lwc( |
| weight_count, |
| dec_weight_quant_uvalue + 2 * i * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + 2 * i * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_2planes, low_values1[i], high_values1[i]); |
| |
| compute_angular_endpoints_for_quant_levels_lwc( |
| weight_count, |
| dec_weight_quant_uvalue + (2 * i + 1) * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + (2 * i + 1) * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_2planes, low_values2[i], high_values2[i]); |
| } |
| else |
| { |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_quant_uvalue + 2 * i * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + 2 * i * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_2planes, low_values1[i], high_values1[i]); |
| |
| compute_angular_endpoints_for_quant_levels( |
| weight_count, |
| dec_weight_quant_uvalue + (2 * i + 1) * BLOCK_MAX_WEIGHTS, |
| dec_weight_quant_sig + (2 * i + 1) * BLOCK_MAX_WEIGHTS, |
| dm.maxprec_2planes, low_values2[i], high_values2[i]); |
| } |
| } |
| |
| promise(bsd.block_mode_count > 0); |
| for (unsigned int i = 0; i < bsd.block_mode_count; ++i) |
| { |
| const block_mode& bm = bsd.block_modes[i]; |
| if (!bm.is_dual_plane || !bm.percentile_hit) |
| { |
| continue; |
| } |
| |
| unsigned int quant_mode = bm.quant_mode; |
| unsigned int decim_mode = bm.decimation_mode; |
| |
| low_value1[i] = low_values1[decim_mode][quant_mode]; |
| high_value1[i] = high_values1[decim_mode][quant_mode]; |
| low_value2[i] = low_values2[decim_mode][quant_mode]; |
| high_value2[i] = high_values2[decim_mode][quant_mode]; |
| } |
| } |
| |
| #endif |