| #!/usr/bin/env python3 |
| # SPDX-License-Identifier: Apache-2.0 |
| # ----------------------------------------------------------------------------- |
| # Copyright 2022 Arm Limited |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| # use this file except in compliance with the License. You may obtain a copy |
| # of the License at: |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| # License for the specific language governing permissions and limitations |
| # under the License. |
| # ----------------------------------------------------------------------------- |
| """ |
| This script is a simple test result plotter for sweeps on multiple compressors. |
| """ |
| import csv |
| import numpy as np |
| import matplotlib.pyplot as plt |
| import sys |
| |
| DATABASE = "competitive.csv" |
| |
| |
| class Series: |
| |
| def __init__(self, name, perf, qual): |
| self.name = name |
| self.perf = perf |
| self.qual = qual |
| |
| |
| def get_series(database, compressor, quality, block_size): |
| title = f"{compressor} {quality} {block_size}" |
| in_section = False |
| |
| perf = [] |
| qual = [] |
| |
| with open(database) as csvfile: |
| reader = csv.reader(csvfile) |
| for row in reader: |
| if len(row) == 1: |
| in_section = row[0] == title |
| continue |
| |
| if in_section: |
| perf.append(float(row[2])) |
| qual.append(float(row[3])) |
| |
| return (perf, qual) |
| |
| |
| def plot(block_size, series_set): |
| |
| for series in series_set: |
| plt.scatter(series.perf, series.qual, s=2, label=series.name) |
| |
| plt.xlabel("Speed (MT/s)") |
| plt.ylabel("PSNR dB") |
| plt.legend(loc='lower right', prop={'size': 6}) |
| |
| plt.tight_layout() |
| plt.savefig(f"ASTC_v_ISPC_{block_size}.png") |
| plt.clf() |
| |
| |
| def plot_diff(series_a, series_b): |
| |
| diff_perf = np.divide(series_a.perf, series_b.perf) |
| diff_qual = np.subtract(series_a.qual, series_b.qual) |
| label = f"{series_a.name} vs {series_b.name}" |
| |
| plt.scatter(diff_perf, diff_qual, s=2, c="#0091BD", label=label) |
| plt.scatter(np.mean(diff_perf), np.mean(diff_qual), s=10, c="#FFA500", marker="*") |
| |
| plt.axhline(y=0, color="r", linestyle="dotted", lw=0.5) |
| plt.axvline(x=1, color="r", linestyle="dotted", lw=0.5) |
| |
| plt.xlabel("Relative speed") |
| plt.ylabel("PSNR diff (dB)") |
| plt.legend(loc='lower right', prop={'size': 6}) |
| |
| plt.tight_layout() |
| file_name = label.replace(" ", "_") + ".png" |
| plt.savefig(file_name) |
| plt.clf() |
| |
| |
| def main(): |
| |
| block_sizes = ["4x4", "6x6", "8x8"] |
| |
| for block_size in block_sizes: |
| series_set = [] |
| |
| perf, qual = get_series(DATABASE, "ISPC", "rgba", block_size) |
| series_set.append(Series(f"{block_size} IPSC Slow", perf, qual)) |
| |
| perf, qual = get_series(DATABASE, "ISPC", "rgb", block_size) |
| series_set.append(Series(f"{block_size} IPSC Fast", perf, qual)) |
| |
| perf, qual = get_series(DATABASE, "ASTC", "60", block_size) |
| series_set.append(Series(f"{block_size} ASTC 60", perf, qual)) |
| |
| perf, qual = get_series(DATABASE, "ASTC", "50", block_size) |
| series_set.append(Series(f"{block_size} ASTC 50", perf, qual)) |
| |
| perf, qual = get_series(DATABASE, "ASTC", "10", block_size) |
| series_set.append(Series(f"{block_size} ASTC 10", perf, qual)) |
| |
| perf, qual = get_series(DATABASE, "ASTC", "8", block_size) |
| series_set.append(Series(f"{block_size} ASTC 8", perf, qual)) |
| |
| plot(block_size, series_set) |
| |
| plot_diff(series_set[3], series_set[0]) |
| |
| return 0 |
| |
| |
| if __name__ == "__main__": |
| sys.exit(main()) |